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In this study, the authors used structural equation modeling to investigate relationships between abil­
ity constructs from the Wechsler IntelliRence Scale for Children-Third Edition (WISC-III; Wechsler, 
1991) in explaining reading and mathematics achievement constructs on the Wechsler Individual 
Acilie\'cl1Ient Test (WIAT; Wechsler, 1992). Participants comprised the nationally stratified Linking 
sample (N = 1,116) ofthe WISC-III and WIAT. Relating the latent ability variables to the latent achieve­
ment variables showed that psychologists must go beyond g in order to meaningfully understand chil­
dren's trait performance on the WISC-III. Results for reading indicated psychologists must pay 
attention to the constructs of g and Verbal Comprehension, and for mathematics, that they are obliged 
to consider g and Freedom From Distractibility. Results are discussed in terms of their theoretical, ap­
plied, and treatment-related implications. 

Several I ines of reasoning support the interpretation of IQ-test 
profiles. Each shares the premise that multiditlerentiated con­
structions of intelligence provide greater insight into the nature 
and complexity of human ability and that by evaluating mul­
tiple abilities, psychologists gain greater diagnostic precision 
(Hale & Fiorello, 2002; Hale, Fiorello, Kavanagh, Hoeppner, 
& Gaither, 200 I; Kaufman, 1994; Sattler, 200 I). This per­
spective stands in direct opposition to a foundational rule of 
science: the law of parsimony, which holds that fewer vari­
ables are to be preferred whenever their explanatory power 
equals that of a more complex model. More formally, the law 
of parsimony states that "what can be explained by fewer prin­
ciples is explained needlessly by more" (Occam's Razor; Jones, 
1952, p. 620). Consequently, it is imperative for psychologists 
adopting the multidilTerentiated perspective to demonstrate 
that their variables possess greater predictive or treatment va­
lidity than that obtainable from a more compact, or even a uni­
tary, view of intelligence (Brody, 1985; Glutting, McDermott, 
Watkins, Kush, & Konold, 1997; Humphreys, 1962; Lubin­
ski, 2000; McNemar, 1964; Messick, 1992). 

The general intelligence (g) construct satisfies the law 
of parsimony. It is singular, and more important, the g-based 
score has excellent construct and criterion-related validity. An 
observed g-based score is also readily available on nearly all 

individually administered IQ tests. Examples include the Full 
Scale IQ (FSIQ) from the Wechsler Intelligence Scale for 
Children-Third Edition (WISC-III; Wechsler, 1991), the Gen­
eral Cognitive Ability (GCA) score from the Differential Ahil­
ity Scales (DAS; C. D. Elliott, 1990), and the General IQ (GIQ) 
from the Woodcock-Johnson III (WJ-IIl; Woodcock, McGrew, 
& Mather, 2001). 

The construct validity of g is well supported by factor 
analysis (Carroll, 1993; Gustafsson, 1989; Keith & Witta, 
1997; Macmann & Barnett, 1994). More important, the great­
est applied utility of the g-based score comes from its criterion­
related validity. The utility of g-based scores, such as the FSIQ, 
GCA, and GIQ, in forecasting academic achievement is one 
of the most enduring findings in the fields of psychology and 
education (for reviews, see Board of Scientific Affairs of the 
American Psychological Association, 1996; Brody, 1985; Glutt­
ing, Adams, & Sheslow, 2000). Broadly speaking, g-based IQs 
correlate about .70 with standardized measures of achievement 
and .50 with grades in elementary school (Brody, 1985; Jen­
sen, 1998). Because of range restrictions, ability-achievement 
correlations decrease as individuals advance through the 
educational system. Typical correlations between g and stan­
dardized high school achievement lie between .50 to .60; for col­
lege, coefficients vary between .40 and .50; and for graduate 
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school, correlations range between .20 and .40 (Brody, 1985; 
Jensen, 1998). 

Large-scale studies also relate the importance of g in pre­
dicting less familiar criteria, such as aggression, delinquency, 
and crime (Caspi & Moffitt, 1993; Gordon, 1997; Wiegman, 
Kuttschreuter, & Baarda, 1992); health risks (Lubinski & 
Humphreys, 1997; Macklin et aI., 1998); and income and 
poverty (Hunt, 1995; Murray, 1998). For instance, g covaries 
.20 to .60 with work performance, .30 to .40 with income, and 
approximately .30 with longevity (Brody, 1992, 1996; Gor­
don, 1997; Jensen, 1998; Lubinski, 2000). These correlates 
are especially interesting because they demonstrate how indi­
vidual differences in g affect outcomes peripheral to educa­
tion (Gottfredson, 1997; Lubinski, 2000). 

At the same time, multiple systems have been advanced 
to interpret ability scores beyond g. Each assumes that discrete 
measures, such as subtest groupings or factor indexes, supply 
nontrivial information not contained in the g-based measure 
(cf. Kaufman, 1994; Sattler, 200 I). Of these measures, factor 
scores are leading candidates for providing additional infor­
mation. Factor scores are more valid than conceptual subtcst 
groupings. Unlike inductively derived subtest organizations, 
such as Kaufman's (1994) and Sattler's (200 I) groupings, fac­
tor scores retain considerable construct validity because they 
are formed empirically on the basis of factor analysis. Each 
factor score in a test battery (e.g., WISC-Ill, WJ-III) also ac­
counts for more variance than that available from individual 
subtest scores. As a result, factor scores are more reliable than 
single subtest scores (as per the Spearman-Brown prophecy; 
Traub, 1991). Furthermore, because factor scores represent 
phenomena beyond the sum of subtest specificity, method vari­
ance, and measurement error, they potentially escape the 
myriad drawbacks that beset attempts to interpret subtest pro­
files (Glutting, McDermott, Konold, Snelbaker, & Watkins, 
1999; McDermott, Fantuzzo, & Glutting, 1990; McDermott, 
Fantuzzo, Glutting, Watkins, & Baggaley, 1992; Watkins 
& Glutting, 2000; Watkins, Youngstrom, & Glutting, 2(02). 
Consequently, factor scores promise the clinical benefits of 
ability differentiation while potentially avoiding problems 
plaguing the more common practice of subtest analysis. 

Glutting, Youngstrom, Ward, Ward, and Hale (1997) ex­
amined the effectiveness of observed factor scores from the 
WISC-III, relative to the FSIQ, in predicting performance on 
the Wechsler Individual Achievement Test (WIAT; Wechsler, 
1992). Data were examined via multiple regression analysis 
(MRA). Following longstanding methodologies for investi­
gating the incremental validity of observed scores (cf. Hum­
phreys, 1962; Lubinski & Dawis, 1992; McNemar, 1964; 
Messick, 1992), hierarchical MRA was employed where the 
parsimonious FSIQ was entered at the first step of the analy­
sis, followed at the second step by the WISC-IlI's four factor 
scores (Verbal Comprehension, Perceptual Organization, Free­
dom From Distractibility, and Processing Speed). Dependent 
variables were Reading, Mathematics, Language, and Writ-

ing composites from the WI AT. Results, using both referred 
and nonreferred samples, showed that WISC-III factor scores 
failed to provide a substantial increase to the prediction of 
achievement after partialling the observed g-based estimate 
(i.e., the FSIQ). Similar findings were reported by Young­
strom, Kogos, and Glutting (1999), using observed factor 
scores and the g-based estimate (GCA) from the DAS. 

In contrast, several authors showed that ability factors 
make important contributions to the understanding of achieve­
ment beyond g (Keith, 1999; McGrew, Keith, Flanagan, & Van­
derwood, 1997). These authors argued that the Wechsler scales 
do not tap critical cognitive constructs and that MRA does not 
allow for a simultaneous analysis of general and specific abil­
ities. To correct these perceived faults, they applied structural 
equation modeling (SEM) to the Woodcock-Johnson Psycho­
educational Battery-Revised (WJ-R; Woodcock & Johnson, 
1989). For example, McGrew et al. examined relationships 
among g and specific cognitive abilities with general and spe­
cific reading and mathematics skills. Results indicated that 
40% of the variance in overall reading achievement was di­
rectly attributable to g. However, for younger children, 11% 
of the achievement in Letter-Word Identification was due to 
the specific ability of Ga (auditory processing) and 22% of 
the variation in Passage Comprehension was directly attrib­
utable to Gc (crystallized intelligence)-and these effects re­
mained after g was partialled. Results therefore revealed that 
certain factor-based abilities were able to predict achievement 
above and beyond g. 

Keith (J 999) extended McGrew et al.'s (1997) study by 
investigating the effects of factor- and g-based abilities from 
the WJ-R for African American, Hispanic, and Caucasian stu­
dents. Dependent variables were general and specific mea­
sures of reading and mathematics. Results were similar across 
ethnic groups: g accounted for a substantial proportion ofvari­
ance in overall reading and mathematics achievement, but 
specific cognitive factors also contributed to the prediction of 
specific reading and mathematics outcomes. For example, up 
to 19% of the achievement variance in the Calculation crite­
rion was due to the Processing Speed factor and around 11% 
of the variance in Letter-Word Identification criterion was due 
to the specific ability of Ga. 

Disparities among outcomes from Glutting, Youngstrom, 
et al. (1997), Youngstrom et al. (1999), McGrew et al. (1997), 
and Keith (1999) may be a consequence of using different 
tests and different samples. However, it is more likely that the 
divergence is due to (a) the type of variables examined and 
(b) the statistical methodology employed. Glutting et al. and 
Youngstrom et al. examined observed factor scores, which are 
the standard scores (e.g., Ms = 100, SDs = 15) psychologists 
interpret on ability and achievement tests. As a consequence 
of investigating observed scores, Glutting et al. and Young­
strom et al. employed MRA as their statistical methodology. 

On the other hand, McGrew et al. (1997) and Keith 
(1999) based their conclusions on SEM. In SEM, interest is 
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focused more on constructs than on observed scores. Thus, 
SEM methodology provides results that are best interpreted 
as relationships between underlying latent traits (i.e., con­
structs), while MRA concentrates on observed scores. Although 
related, latent traits and observed scores are not identical. Pre­
dictively, observed factors scores are more likely to result in 
problems as a consequence of multicolinearities (i.e., the ob­
served factor scores are highly intercorrelated) and/or singu­
larities (i.e., the FSIQ in the WISC-III is formed directly from 
a large number of subtests contributing to the factor scores). 
Therefore, SEM more accurately evaluates the true, or causal, 
effects of one construct on another. 

Keith (1999) suggested that SEM should be applied to 
cognitive instruments other than the Woodcock-Johnson scales. 
Surprisingly, despite widespread use of Wechsler's tests, SEM 
has not been employed with the WISC-III and the WIAT. The 
research presented in this article used SEM to investigate the 
relative importance of general- versus specific-ability con­
structs from the WISC-III in predicting reading and mathe­
matics achievement on the WIAT. Additionally, the current 
study expanded the SEM methodology used by McGrew et 
al. (1997) and Keith to include analyses of the effects of both 
general and specific cognitive abilities on both general and 
specific reading and mathematics achievement. 

Method 

Participants and Instruments 

The SEM analyses employed standard scores from the link­
ing sample of the WISC-III and the WI AT (Wechsler, 1992). 
The sample (N = 1,116) ranged in age from 6 years 0 months 
through 16 years 11 months and was nationally representative 
within ±2% of the 1990 U.S. Census on the variables of age, 
gender, race/ethnicity, region of country, and parent education 
level. Ability constructs were based on standard scores for 
12 WISC-III subtests, including the mandatory five Verbal and 
five Performance subtests (Wechsler, 1991, p. 5). The supple­
mentary subtests of Digit Span and Symbol Search were in­
cluded because they undergird the WISC-III's factor indexes. 
The alternative Mazes subtest was not used. Both Digit Span 
and Symbol Search are regarded as primary components in 
most interpretation systems, whereas Mazes is traditionally 
excluded (e.g., see Kaufman, 1994; Sattler, 2001). The WIAT 
contains eight subtests that can be aggregated into four com­
posites: Reading, Mathematics, Language, and Writing. Like 
McGrew et al.'s (1997) and Keith's (1999) studies, the current 
investigation concentrated on outcomes in reading and math­
ematics. Therefore, standard scores (Ms = 100, SDs = 15) 
from subtests underlying the WIAT's Reading (Basic Reading 
and Reading Comprehension) and Mathematics (Numerical 
Operations and Mathematics Reasoning) composites were 
used as the observed achievement measures. 

Models 

SEM allows researchers to specify a priori, direct, and indi­
rect relationships among variables in a model. Given the po­
tential complexity of findings, results are typically portrayed 
through figures. In the current analyses, ability variables and 
traits were placed to the lefts ide of figures and achievement 
variables and traits were placed to the right. Observed variables 
were enclosed in rectangles (i.e., the measured WISC-III and 
WIAT scores). All observed scores were assumed to be af­
fected by latent traits/constructs, which were enclosed in el­
lipses. The observed ability and achievement variables were 
also assumed to be affected by other influences, such as mea­
surement error and unique subtest variances. These sources of 
variation were symbolized by small circles. 

Factor scores, by their very nature, are indeterminant. 
An infinite number of factor scores are possible for an indi­
vidual because rotational procedures in factor analysis are in­
definite and open the possibility to a never-ending number of 
solutions. Nevertheless, four factors were previously supported 
for the WISC-III (Keith & Witta, 1997; Wechsler, 1991). 
These factors also appear on the profile sheet ofWISC-III pro­
tocols, and they represent the factors examiners typically in­
terpret. Consequently, the current study specified the same 
four first-order latent traits for the WISC-III: 

1. Verbal Comprehension (VC), composed of ob­
served scores from the Information, Similari­
ties, Vocabulary, and Comprehension subtests; 

2. Perceptual Organization (PO), developed from 
subtest scores on Picture Completion, Picture 
Arrangement, Block Design, and Object 
Assembly; 

3. Freedom From Distractibility (FD), assembled 
from scores on the Arithmetic and Digit Span 
subtests; and 

4. Processing Speed (PS), which was made up of 
scores from Coding and Symbol Search. 

In certain models, the four first-order cognitive constructs were 
assumed to be caused by the second-order g trait. This portion 
of the model represents a hierarchical confirmatory factor 
analysis (CFA) ofWISC-III abilities. Validity for this CFA or­
ganization was previously supported using ability subtests from 
the WISC-III standardization sample (Keith, 1997; Keith & 
Witta, 1997). 

The right side of figures represented both observed and 
latent structures for the WIAT. For all reading analyses, two 
first-order latent traits were specified. These traits had direct 
correspondences to achievement subtests in the WIAT: Basic 
Reading and Reading Comprehension. The first-order read­
ing traits were also assumed to be caused by a single second­
order latent dimension, Reading, which paralleled the WIAT's 
Reading composite. Similarly, for all mathematics analyses, 
two first-order latent traits were identified according to subtest 
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scores in the WIAT: Number Operation and Mathematics 
Reasoning. The two first-level mathematics factors were spec­
ified to be caused by a single second-order latent dimension 
labeled General Mathematics. Unreliability was estimated for 
the Reading and Mathematics subtests by setting errors and 
unique variances to the estimated reliability of the subtest (as 
listed in the WIAT manual) subtracted by I and then multi­
plied by the variance for the test (Bollen, 1998). 

Nine models were developed between ability and read­
ing achievement and another nine were developed between 
abi I ity and mathematics achievement. The two sets of models 
were identical, except for their focus (i.e., reading vs. mathe­
matics). Each model is identified in the following sections. 

Model 1: g to General Achievement. This model best 
satisfies the law of parsimony. A single ability construct (g) 

was used to account for relationships. In essence, this model 
was found by Glutting et al. (1997) and Youngstrom et ai. 
(1999) to work best for observed scores from the WISC-III 
and the DAS. One second-order latent ability trait (g) was 
used to estimate relationships to general reading or general 
mathematics achievement (i.e., a single, second-order latent­
achievement trait was specified). 

Model 2: Specific Abilities to General Achievement. 
The second model posited that multiple abilities alone pro­
vide greater precision in understanding general achievement. 
The g construct was not included. Instead, specific abilities 
(the first-order latent traits of VC, PO, FD, & PS) were used 
to estimate relationships to general reading or general mathe­
matics achievement (a single, second-order latent-achievement 
trait). 

Model 3: g to Specific Achievement. Model 3 was a 
variant of Model I. The difference is that the single second­
order latent-ability trait (g) was used to estimate relation­
ships to specific, rather than general, reading or mathematics 
achievement. In the case of the reading analysis, two first­
order latent achievement traits were specified (Basic Reading 
and Reading Comprehension). For the mathematics analysis, 
two other first-order latent traits were specified (Number Op­
eration and Mathematics Reasoning). 

Model 4: Specific Abilities to Specific Achievement. 
Model 4 was a variant of Model 2. The fourth model posited 
that multiple abilities alone provide greater precision in un­
derstanding specific achievement. The difference between 
Models 2 and 4 is that specific abilities were used in Model 4 
to estimate relationships to specific, rather than general, read­
ing or mathematics achievement. For the reading analysis, 
two first-order latent-achievement traits were specified (Basic 
Reading and Reading Comprehension). Likewise, for the math­
ematics analysis, two first-order latent traits were specified 
(Number Operation and Mathematics Reasoning). 

ModelS: g and VC to Specific Achievement. McGrew 
et al. (1997) and Keith (1999) found that both g and certain 
specific abilities were necessary to understand achievement 
processes. Therefore, ModelS used g and one specific ability 
construct (VC) to estimate relationships to specific reading or 
mathematics achievement. 

Model 6: g and PO to Specific Achievement. Model 6 
was a modification of ModelS. Like ModelS, Model 6 em­
ployed g. The difference is that PO (vs. VC) served as the spe­
cific ability construct used to estimate relationships to specific 
reading or mathematics achievement. 

Model 7: g and FD to Specific Achievement. Model 7 
also was a modification of Model 5. Here, FD served as the 
specific ability construct used to estimate relationships to spe­
cific reading or mathematics achievement. 

Model 8: g and PS to Specific Achievement. Model 8 
was another modification of ModelS, wherein PS served as 
the specific ability construct llscd to estimate relationships to 
specific reading or mathematics achievement. 

Model 9: General Ability to General Achievement 
and Specific Abilities to Specific Achievements. Model 9 
was a variant of the most parsimonious (i.e., best) modcl Keith 
(1999) and McGrew et al. (1997) obtained when they used 
SEM to examine ability and achievement constructs from the 
WJ-R. For reading, Model 9 provided paths from g to general 
reading achievement and from some of the specific WISC-Ill 
abilities to specific WIAT achievement constructs (i.e., VC to 
Basic Reading and Reading Comprehension). The path from g 

to the general reading construct (i.e., Reading) suggested that 
g affected general reading achievement. This path also af­
fected the specific reading constructs. In other words, Model 9 
specified that the effects of g on Basic Reading and Reading 
Comprehension would be found indirectly through the gen­
eral achievement construct of Reading. The paths from spccific 
abilities to specific achievements, in turn, tested whether these 
specific abilities affect specific achievements in addition to 
the effect of g on Reading. For mathematics, Model 9 was also 
specified according to both general and specific achieve­
ments. 

In addition to the above, nested modcls based on Gus­
taffson and Balke's (1993) methods were attempted because 
they allow clear statements about the independent contribu­
tion of each latent construct. Unfortunately, those models did 
not converge and produced improper solutions. 

Procedure 

All models employed subtest standard scores and were eval­
uated through the Analysis of Moment Structures (AMOS; 
Arbuckle & Wothke, 1999) using maximum likelihood (ML) 
estimation. Inasmuch as ML was developcd under the multi-
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variate normality assumption , that assumption was checked by 
examining Mahalanobis distances, skewness, and kurtosi s of 
the observed variables. Skewness and kurtosis were appro­
priate with no extreme values, but the Mahalanobis distance 
p value was less than .00 I for 9 cases. Therefore, the nine out­
liers were deleted, leaving I , I 07 cases for analys is. 

Several measures of fit exist for evaluating the quality 
of SEM models. each was developed under somewhat differ­
ent theoretical frameworks, and each focuses on different com­
ponents (cf. Kaplan, 2000). Multiple measures were reported 
for the present study to highlight different aspects of fit in ad­
dition to the chi-square statistic: goodness of fit index (GFI) , 
adjusted goodness of fit index (AGFI), Tucker-Lewis index 
(TU), comparative fit index (CFI), and the root mean square 
error of approximation (RMSEA). The GFI is similar to a 
squared multiple correlation in that it provides the amount of 
variance/covariance that can be explained by the model under 
consideration (Kline, 1998; Tanaka, (993). The AGFI, by con­
trast, is analogous to a squared multiple correlation corrected 
for model complexity. Thus, the AGFI is useful for comparing 
competing models. The TU and CFr are conceptually different 
from one another, but both measure fit by comparing a given 
hypothesized model to a null model that assumes no relation­
ship among the observed variables. The difference is that the 
TU is less subject to sample size influences (Kranzler & Keith, 
1999). These four measures range between 0 and 1.00, with 
larger values refl ecting better fit. Traditionally, values of .90 
or greater are interpreted as evidence of appropriate fit (Bent­
le r & Bonett, 1980). However, more recent literature suggests 
that better fitting models produce values around .95 (Hu & 
Bentler, 1999) . 

The RMSEA takes into account the error of approxima­
tion in the population. Thi s index tells how well a studied 
model fits the popUlation covari ance matrix- if it is available. 

RMSEA values of less than .05 indicate good fit , and values 
as high as .08 present reasonable errors of approximation in 
the population (Browne & Cudeck, 1993). The AMOS pro­
gram used for the current study tests for the closeness of fit. 
That is, it tests the hypothesis that the RMSEA provides a 
good fit in the population. Jtireskog and Stirbom (1996) sug­
gested that the p value for thi s test should be greater than .50. 

Model comparison is another key consideration in SEM. 
Two such criteria are the Akaike Information Criterion (AlC; 
Akaike, 1974, 1987) and the Expected Cross Validation Index 
(ECVI), based on the work of Browne and Cudeck (1993). 
The AIC and ECVI are used to select one or more models 
from a set of plausible depictions and identify those likely to 
perform best with future samples of the same size drawn from 
the population in the same way. Small values of AIC and 
ECVI are associated with a better fit of the implied models 
(Jtireskog & Stirbom, 1993) . Expected ranges for the AIC and 
ECVI are not possible because they are cross-validation in­
dices, with smaller relative values indicating better fits . 

Although multiple fit indices are reported, decisions 
concerning which model best fit the data were based primaI'­
ily on the AIC and ECVl. Some, but not all , models in the 
study were nested. The AIC and ECVI offer a choice between 
competing models regardless of the nested status. The chi­
square (.6.X2), GFI, AGFI, and RMSEA statistics were con­
sidered as supplemental indices for comparing models. 

Results 

Reading Achievement 

Table I presents measures of fit for the nine reading achieve­
ment models . Models 6 and 7 resulted in improper solutions 

TABLE 1. Comparison of M odel Fit M easures of General and Specific Abilities on the Reading Accounting for 
M easurement Error 

Model X2 df I'1X2 P GFI AGFI TLI CFI RMSEA AIC ECVI 

427.61 72 0.95 0.92 0.94 0.96 0.07*** 493.61 0.45 
2 1884.10 73 1456.49" < .00 1 0.79 0.69 0.7 1 0.77 0.15*** 1948. 10 1.76 
3 49 1.64 73 0.94 0.9 1 0.93 0.95 0.07*** 555.64 0.50 
4 1910.13 71 1418.49b <.00 1 0.78 0.67 0.70 0.77 0.15*** 1978 .1 3 1.79 
5 389.15 70 0.95 0.93 0.95 0.96 0.06*** 459.15 0.42 

6 Improper solution 

7 Improper solution 

8 42 1.75 70 32.60c < .00 1 0.95 0.92 0.94 0.96 0.07 49 1.75 0.45 

9 362.74 70 26.41 d < .00 1 0.96 0.93 0.95 0.96 0.06** 432.74 0.39 

NOle. GFI = Goodness of Fit Index; AGFI = Adjusted Goodness of Fit Index; TLl = Tucker-Lewis Index; CFI = Comparat ive Fit Index; RMSEA = Root mean square error of 
approx imation; A IC = Akaike information criterion; ECVI = Expected Cross-Va lidation Index. 
a~X2 of 1456.49 = X2 of Model 2 - X2 of Model I. b~X2 of 1418.49 = X2 of Model 4 - X2 of Model 3. CX2 of 32.60 = X2 of Model 8 - X2 of Model 5. d~X2 of 26.4 1 = X2 of 
Model 5 - X2 of Model 9. 
" p = .00 I. "'p < .000. 
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because standardized parameter estimates exceeded L.OO (see 
Note 1). Model 9 supplied the best solution and its overall fit 
was good. This model combined effects from fi, as well as those 
from two factor-based abilities (VC and PO) in predicting both 
general and specific reading achievements. Consequently, re­
lationships among aptitude and reading constructs were com­
plex and more than the singular fi construct was necessary to 
fully understand them. The equation with the second best fit 
was Model 5, which also employed both general- and specific­
ability constructs (i.e., fi to general reading achievement and 
VC to specific reading achievement). Nevertheless, the dif­
ference in chi-square values between Models 9 and 5 was 
26.41, indicating that Model 9 was significantly better than 
ModelS; therefore, Model 9 provided the best relative fit (see 
Note 2). Results therefore showed that a combination of gen­
eral and specific abilities was necessary to provide a reason­
able explanation of reading achievement. 

Standardized parameter estimates for Model 9 (direct, 
indirect, and total effects) are displayed in Figure I. Although 

fi was an important vehicle for understanding reading con­
structs , the specific abilities of VC and PO were also essen­
tial. For instance, the path from VC to General Reading shows 
a value of .30 and means that for each standard deviation in­
crease in VC, performance on the General Reading construct 
increased .30 standard deviations. Path coefficients are stan­
dardized to M = 0.0 and SD = 1.0 and are interpreted in terms 
of standard deviation units. Effect size guidelines have been 
proposed for interpreting of standardized regression weights 
(Betas; Pedhazur, 1982), where values between .05 and .10 
represent small effect sizes, values between .1 I to .25 equal 
medium effect sizes , and values .26 or greater denote large ef­
fect sizes. Accordingly, findings revealed large effect sizes for 
VC across three reading constructs: General Reading (~ = 
.30), Basic Reading (~ = .26), and Reading Comprehension 
(~ = .28). More important, the contribution of VC remained 
after the effect of fi was already controlled. 

Path coeflicients as large as those for VC must be con­
sidered important and practically significant. For instance, 

Basic 
Reading 

FIGURE 1. Effects of general and specific abilities on genera l reading achievement, counting random measurement 
error. Note. inf = information; sm = simi larities; voc = vocabu lary; comp = comprehension; pc = picture completion; 
pa = picture arrangement; bd = block design; oa = object assembly; VC = verbal comprehension; PO = perceptual 
organization; FD = freedom from distractibility; PS = processing speed. 
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outcomes for VC parallel findings from meta-analyses of such 
meaningful psychological relationships as the validity of screen­
ing tests in selecting job personnel (overall meta-analysis 
association = .27; Russell et aI., 1994) , the effect of Verbal 
scores from the Graduate Record Examination in predicting 
grade point averages (association = .28; Morrison & Morrison, 
1995), and the overall effectiveness of psychotherapy (asso­
ciation = .32; Smith & Glass, 1977). Likewise, VC's contribu­
ti on parallels such important medical findings as the effect of 
sleeping pills on reducing chronic insomnia (association = .30; 
Nowell et aI., 1997); the relationship of stress tests in identify­
ing heart disease (association = .30; Kwok, Kim, Grady, Segal, 
& Redberg, 1999), and the utility of mammograms in detect­
ing breast cancer (association = .32; Mushlin, Kouides, & 
Shapiro, 1998). 

Current VC outcomes rival, or exceed, effect sizes ob­
tained during prior SEM studies of specific abilities (ct. Keith, 
1999; McGrew et aI., 1997). Therefore, in terms of relative util­
ity, current findings clearly support inferences that VC made 
a meaningful contribution to the explanation of both general 
and specific reading constructs-and that it did so beyond lev­
els offered by g. 

Path coefficients in Figure I also make it clear that the 
FO and PS constructs provided no insight into children's read­
ing achievement. Interestingly, results were contrary to ex­
pectations for the PO construct. Although PO had a moderate 
direct effect on General Reading (~ = -.39) and moderate in­
direct effects on Basic Reading (~= -.34) and Reading Com­
prehension ( ~ = -.36), all three effects were IWRative. The 
negative relationship is intriguing and raises a number of pos-

sibilities. The most likely appears to be the presence of multi­
colinearity. Thus, findings revealed that once the contribution 
of Rand VC were controlled, for higher scores on PO were 
correlated with lower performance on General Reading, Basic 
Reading, and Reading Comprehension. The current findings 
hold important interpretive implications: Clinicians should 
pay little to no attention to children's performance on the abil­
ity constructs of PO, FD, and PS when trying to explain chil­
dren's reading achievement. Instead, concentration should be 
confined to interpreting two WISC-III constructs-g and Vc. 

Table 2 offers further insights into the relative contribu­
tions made by g, VC, and PO. The most important rows are 
labeled "total" because they represent combined effects (i.e., 
total effect = direct effect + indirect effect). As previously es­
tablished, unlike the negative contribution of PO, VC had an 
important positive effect on reading outcomes. At the same 
time, Table 2 makes it clear that g was at least three times 
more important than VC in explaining reading achievement. 
For example, g was 3.3 times more important than VC in un­
derstanding performance on the General Reading construct 
(total effect of R = .96; total effect ofVC = .30: .96/.30 = 3.3); 
3.0 times more important than VC in understanding Basic 
Reading outcomes (total effect of g = .78; total effect ofVC = 
.26: .78/.26 = 3.0); and 3.0 times more important than VC in 
understanding Reading Comprehens ion (total effect of g = 
.84; total effect ofVC = .28: .84/.28 = 3.0). Thus, the interpre­
tive implication is clear: g is the most important construct in 
explaining reading performance, and clinicians need to give 
3 times as much credence to the R factor as to interpretations 
from Vc. 

TABLE 2 . Direct and Indirect Effects of WISC-III Traits in Predicting WIAT Reading Outcomes for the 
Best-Fitting M odel 

WIAT outcome 

WISC-III predictor General Reading Basic Reading Reading Comprehension 

g 
Direct 0.96 0.00 0.00 
Indirect - 0.05 0.78a 0.84 
Total 0.91 0.78 0.84 

Verba l Comprehension 
Direct 0.30 0.00 0.00 
Indirect 0.00 0.26 0.28 
Total 0.30 0.26 0.28 

Perceptual Organization 
Direct -0.39 0.00 0.00 
Indirect 0.00 - 0.34 -0.36 
Total - 0.39 -0.34 - 0.36 

Note. WISC· III = Wechsler IlIIelligence Scale/or Children-Third Edition (Wechsler, 199 1); WI AT = Wechsler Individual Achievelllelll Test (Wechsler, 1992). 
aThe ind irect effect of g on Basic Reading is calculated using path coeffic ients prov ided in Figure I as fo llows: (coefficient fro m g to Verbal Comprehension x coeffi cient from 
Verba l Comprehension to Reading x coeffi cient from Reading to Basic Reading) + (coefficient from g to Perceptual Organization x coeffi cient from Perceptual Organization to 
Reading x coeffic ient from Reading to Basic Reading) + (coeffi cient from g to Reading x coeffi cient from Reading to Basic Reading). Thus, the resuiting coeffi cient equals .78 
(i.e., .88 x .30 x .86 + [.82 x -.39 x .861 + .96 x .86]) . 
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Mathematics Achievement 

Table 3 presents fit indiccs for the nine mathematics models. 
Like that for reading, standardized parameter estimates ex­
ceeded 1.00 for several models (5-7) and caused improper 
solutions (see Note 3). Results across analyses showed that 
Model 9 was best and that its level of fit was acceptable. This 
model combined effects from g and three factor-based abilities 
(YC, PO, and FD) in predicting both general and specific math­
ematics achievement. Therefore, results serve to emphasize the 
need to move beyond g when explaining mathematics achieve­
ment. Model 8 (g to general mathematics achievement and PS 
to specific mathematics achievements) provided the second­
best fit after the variance of z3 was constrained to 0 (see 
Note 4). Table 3 shows that the difference in chi-aquare val­
ues between Model 9 and Model 8 was statistically signifi­
cant but the effect size was small, LlX2(2) = 24.08, p < .00 I. 

Overall, results indicated that Model 9 offered the best 
fit. Standardized parameter estimates for this model (direct, 
indirect, and total effects) are displayed in Figure 2. General 
ability had a large direct effect on General Mathematics (f3 = 
.49) and an indirect effect on each specific mathematics con­
struct; that is, g had an appreciable indirect effect on Number 
Operation (~ = .79) and on Mathematics Reasoning (~ = .88). 
With respect to the factor-based abilities, results revealed that 
YC and PS did not add to the explanation of general and spe­
cific mathematics constructs. PO evidenced moderate effect 
sizes on the mathematics constructs (highest ~ = -.26). How­
ever, against expectations, all of the effects were negative. Al­
ternatively, FD showed a positive and appreciable direct effect 
on General Mathematics (~ = .72) and positive and apprecia­
ble indirect effects on Number Operation (~ = .(3) and Math­
ematics Reasoning (~ = .70), beyond g. 

Table 4 further clarifies the relative contributions of g, 
YC, PO, and FD to the explanation of mathematics. Like that 
for reading, total effect sizes for g (i.e., its direct + indirect cf­
fects) were large for all three mathematics criteria: .92 to 
General Mathematics, .80 to Number Operation, and .90 to 
Mathematics Reasoning. By contrast, effect sizes for YC were 
negligible (-.05 to General Mathematics, -.()4 to Number Op­
eration, and -.04 to Mathematics Reasoning). Although effect 
sizes for PO were moderate, they also were negative and the­
oretically incongruent (-.26 to General Mathcmatics, -.23 to 
Number Operation, and -.26 to Mathcmatics Reasoning). Likc 
that for the best reading model, the negative relationship be­
tween PO and general mathematics (i.e., Math) is intriguing 
and raises a number of possibilities. The most likely appears 
to be the presence of multicolinearity. 

Only FD made a meaningful and theoretically congru­
ent contribution to mathematics achievement above levels 
afforded by g. Effect sizes for FD were both theoretically con­
gruent and large (.72 to General Mathematics, .63 to Number 
Operation, and .70 to Mathematics Reasoning). Consequently, 
outcomes reveal that clinicians necd to pay little to no atten­
tion to children's performance on the ability constructs ofYC, 
PO, and PS when trying to explain children's mathematics 
achievement. Instead, interpretations should be limited to g 
and FD. 

Unlike reading outcomes, for which g was clearly supe­
rior to YC, effect sizes for mathematics showed that FD's con­
tribution rivaled levels supplied by g. For example, g was only 
1.27 times more important than FD in understanding perfor­
mance on General Mathematics (total effect of g = .92; total 
effect of FD = .72: .92/.72 = 1.27); 1.25 times more impor­
tant than FD in explaining Number Operation (total effect of 
g = .79; total effect of FD = .63: .79/.63 = 1.25); and 1.26 

TABLE 3. Comparison of Model Fit Measures of General and Specific Abilities on the Mathematics Accounting for 
Measurement Error 

Model X2 df !J.X2 P GFI AGFI TLI CFI RMSEA AIC ECVI 

385 .58 73 0.95 0.93 0.95 0.96 0.06** 449.58 OAI 
2 187 1.50 73 1485 .92a < .001 0.73 0.69 0.72 0.76 0.15 *** 1935 .50 1.75 

3 440.55 73 0.95 0.92 0.94 0.95 0.07* ** 504.55 OA6 
4 1843.2 1 71 1402.66b < .001 0.79 0.68 0.72 0.78 0.15 *** 19 11.21 1.73 

5 Improper solution 

6 Improper solution 

7 Underidentification 

8 365.83 71 19.75c <.001 0.96 0.93 0.95 0.96 0.06** 433.83 0.39 

9 341.75 69 24.08d < .001 0.96 0.94 0.96 0.97 0.06* 4 13.75 0.37 

NOle . GFI ~ Goodness of Fit Index; AGFI ~ Adjusted Goodness of Fit Index; TLI ~ Tucker-Lewis Index; CFI ~ Comparative Fit Index; RMSEA ~ Root mean square error of 
approximation; Ale = Akaike information cri teri on; ECYI = Expected Cross-Validation Index.. 2 . d 2 -' _ 2 r 
a~X2 of 1485.92 ~ X2 of Model 2 - X2 of Model I . b~X2 of 1402.66 ~ X2 of Model 4 - X2 of Model 3. C~X2 01· 19.75 ~ X2 of Model I - X of Model 8. ~X of 24.08 - X 0 

Model 8 - X2 of Model 9. 
*p ~ .05. **p ~ .00 I. ***p < .000. 
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times more important than FD in describing Mathematics 
Reasoning (total effect of g = .88; total effect of FD = .70: 
.'(..'(../.70 = 1.26). FD therefore made a large contribution to the 
explanation of mathematics achievement after the effect of g 
was controlled, and its explanatory power rivaled levels sup­
plied by g. The interpretive implication is clear: Clinicians 
nccd to give cqual wcight to g and FD when explaining chil­
(II'cn's mathcmaties :lchicvcmcnt. Given thc imporlance of FD 
to mathematics achievement, it is disconcerting to note the 
absence of this construct in the recently re leased Wechsler/n­
fcl/igcn cc Scalc/iJl' Childrcn-Fourth Edition (WISC-IV; Wech­
sler,20(3) . 

Age Replications 

McGrew et a!. (1997) and Keith (1999) observed develop­
mental trends during SEM analyses of the WJ-R. Replications 
were also attempted for four age groups from the WISC-III 
and WIAT Linking sample: 6 through 9 years, 10 through 13 
years, and 14 through 17 years. Age-level replications failed 
to improve on the overall models for e ither reading or math­
emati cs. Consequently, unli ke that for the WJ-R , no mean­
ingful deve lopmental trends were observed for the WISC-ITT 
and the WIAT. 

Discussion 

Current results with the WISC-III and WIAT extend our knowl­
edge about complex relationships between abilities and achieve­
ment. The results hold three sets of implications: theoretical, 
applied, and treatment-related. 

Theoretical Implications 

The current study based its findings on SEM, which is a mul­
tivariate technique designed to identify relationships among 
latent traits (i.e., constructs). Findings for both the reading and 
mathematics criteria make it clear that psychologists must 
go beyond g in order to meaningfully understand children's 
performance on the WISC-III. At the same time, results dem­
onstrated psychologists should not give equal weight to all 
constructs in the WISC-III. For instance, when attempting to 
explain children's reading achievement on the WIAT, psy­
chologists should limit interpretations to just two constructs: 
g and YC. No explanatory increase is obtained from PO, FD, 
or PS, and examin ing these traits in relationship to children's 
reading levels is simply a matter of overinterpretation. Simi­
larly, when explaining children's mathematics achievement, 
psychologists should confine interpretations to just g and FD 

TABLE 4. Direct and Indirect Effects of WISe -III Traits in Predicting WIAT M athem atics Outcomes for the Best ­
Fitting Model 

WIAT outcome 

WIse-III predictor General Math Number Operation Math Reasoning 

g 
Direct 0.49 0.00 0.00 
Indirect 0.43 0.79a 0.88 
Total 0.92 0.79 0.88 

Verbal Comprehension 
Direct - 0.05 0.00 0.00 
Indirect 0.00 - 0.04 - 0.05 
Total -0.05 - 0.04 - 0.05 

Perceptual Organi zati on 
Direct - 0.26 0.00 0.00 
Indirect 0.00 - 0.23 - 0.25 
Total - 0.26 - 0.23 -0.25 

Freedom From Distractibi lity 
Direct 0.72 0.00 0.00 
Indirect 0.00 0.63 0.70 
Tota l 0.72 0.63 0.70 

Note. Wi Se- III = Wechsler II/telligel/ce Scale f or Childrel/- Third Editial/ (Wechsler, 199 1); WI AT = Wechsler Individual Achievemelil Test (Wechsler, 1992). 
uThe indirect effect o f g 0 11 Number Opera tion is calculated using path coefficients provided in Figure 2 as fol lows: (coefficient from g to Verbal Comprehension x coefficient 
from Ve rbal Comprehension 10 Math x coe ffi c ient from Math 10 Number Operali on) + (coeffi cient from g to Pcrceplual Organization x coeffi cienl from Perceptual Organizat ion to 
Math X coe ffl cienl from Malh 10 Number Operalion) + (coe ffi cienl from g to Freedom From Dislraclibilily X coeffi cient from Freedom From Distractibilily to Math x coeffi c ient 
fro m Mat h 10 Num ber Operation) + (coeffi cienl from g to Malh x coeffi cienl from Math to Num ber Openn ion). T hus, the resull ing coeffi c ienl equals .79 (i.e ., [.88 x - .05 x .87] 
+ [.82 x -.26 x .87] + [.94 x .72 x .87] + [.49 x .87]). 
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Number 
Operation 

Reasoning 

FIGURE 2. Effects of genera l and specific a bilities on genera l mathematics achievem ent , count­
ing random measurement erro r. Note. inf = information; sm = similarities; voc = vocabulary; 
comp = comprehension; pc = picture completion; pa = picture arrangement; bd = block design; 
oa = object assembly; vc = verba l comprehension; po = perceptual organization; FD = freedom 
from distractibility. 

and ignore the YC, PO, and PS constructs . Thus, current out­
comes strongly indicate that psychologists should look no 
further than the WISC-III constructs of g, YC, and FD when 
attempting to explain two of the most crucial outcomes in ed­
ucation: reading and mathematics achievement. 

Current findings with the WISC-III and WIAT are con­
sonant with outcomes obtained by Keith (1999) and McGrew 
et al. (1997) with the WJ-R. Similar conclusions were reached 
by Kuusinen and Leskinen (1988), as well as by Gustafsson and 
Balke (1993) , with other measures of ability and achievement. 
When general and specific ability constructs are compared to 
general and specific achievement constructs, g usually ac­
counts for the largest proportion of variance in achievement. 
However, additional achievement variance is explained by 
specific cognitive constructs. As noted by Detterman (2002), 
g only accounts for 25% to 50% of the variance in achieve­
ment outcomes, leaving 50% to 75% of the variance to be ex­
plained by other constructs. Likewise, "no one believes that g 

is the only construct needed to describe individual differences 
in intelligence" (Brody, 2002, p. 122). The findings obtained 
here in regard to the WISC-III need to be replicated and ex­
tended to the WISC-IV. 

Applied Implications 

Psychologists would be incorrect to assume that they can apply 
the current findings to their day-to-day assessments . For ex­
ample, when examining for reading problems, psychologists 
might take these results to mean that they should limit inter­
pretations to just the FSIQ and Verbal Comprehension Index 
of the WISC-III. However, even this restricted set of interpre­
tations is probably too much. 

To understand why overinterpretation is likely, psychol­
ogists must recognize that the observed scores obtained during 
routine clinical assessments are very different than the latent 
traits (i.e., constructs) derived by SEM. Observed scores are 
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standard scores, such as the FSIQ, Index scores, and subtest 
scores in the WISC-Ill. Observed items and scales often con­
tain variance from several sources and from several levels 
of generality (Gustafsson, 1994; Ullstadius, Gustafsson, & 
Carlstedt, 2002). The FSIQ, for example, is a mixture of R, spe­
cific cognitive skills, and systematic error (Colom, Abad, Gar­
cia, & Juan-Espinosa, 2002). 

SEM, on the other hand, provides results that are best 
interpreted as relationships among pure constructs measured 
without error. SEM is a good method for testing theory, but it 
is less satisfactory for direct, diagnostic applications. The ob­
served scores employed by psychologists contain measure­
ment error, whereas latent SEM traits do not (i.e., reliability 
coefficients = 1.00). Basing diagnostic decisions on theoreti­
cally pure constructs is very difficult in practice. Even ap­
proximating the construct scores derived from SEM requires 
complex, tedious calculations. 

A case study will help clarify distinctions between ob­
served scores and latent constructs. The appendix provides the 
steps necessary to convert observed scores from the WISC-III 
into constructs represented in Model 9, the model with the 
best fit for reading. It does so in the context of showing how 
SEM can be employed to develop IQ-achievement discrep­
ancies. The purpose of the appendix is heuristic. It is not 
meant to endorse the application of IQ-achievement discrep­
ancies. There are many legitimate reservations psychologists 
might have about using them to diagnose learning disabilities 
(Aaron, 1997; Fletcher et aI., 1998; Fuchs, Fuchs, & Speece, 
2002; Siegel, 1998; Vellutino, Scanlon, & Lyon, 2000). In­
stead, the appendix is useful for highlighting four dissimilar­
ities between observed scores and latent traits. First, even a 
cursory review of equations reveals that SEM constructs are 
not equivalent to observed scores. Second, constructs rank 
children differently than observed scores, and, as the correla­
tion between observed scores increases, so does the change. 
Thus, children's relative position on constructs (e.g., VC) can 
be radically different than their standing on corresponding ob­
served scores (the Verbal Comprehension Index). Third, as the 
appendix makes clear, construct scores are not readily avail­
able to psychologists. Fourth, it is possible to estimate construct 
scores. However, until the equations appear in computer­
interpretation programs, or unless psychologists are willing to 
engage in laborious calculations, they will have to rely on ob­
served scores. 

Perhaps the most important finding here is that psychol­
ogists cannot directly apply results from SEM. Observed scores 
must first be converted to construct scores before outcomes 
can be translated into practical, everyday uses. This situation 
holds not only for ability and achievement tests but for all 
SEM findings, regardless of whether analyses are directed to 
personality variables (e.g., parent, teacher, and self-reports of 
psychopathology), neuropsychological test scores, results from 
memory experiments, and the like. 

One question remains: What should psychologists do if 
they do not want to calculate WISC-III construct scores and/or 

they prefer to interpret observed scores? We previously dem­
onstrated that the FSIQ accounted for the lion's share of WI AT 
variance and that observed factor scores failed to substantially 
increase this prediction (Glutting, Youngstrom, et aI., 1997). 
Therefore, psychologists who interpret observed scores should 
follow the guidelines provided in our earlier study (Oh, 2002) 
and heed the law of parsimony. 

Treatment-Related Implications 

A prominent finding from this study, as well as from nearly all 
similar studies conducted across the last half century, is that 
R is an excellent predictor of achievement. At the same time, 
it is becoming fashionable to laud the predictive aspects of R 
while simultaneously lamenting its lack of treatment validity. 
This position was taken by a number of scholars during a re­
cent miniseries in the School PsycholoRY Review (cf. Canter, 
1997; S. N. Elliott & Fuchs, 1997; Esters, Ittenbach, & Han, 
1997; Flanagan & Genshaft, 1997; Lopez, 1997; Reschly, 
1997). It is true that as a target of intervention, R is noticeably 
resistant to change. A well-known example is Head Start, in 
which children have demonstrated initial intervention gains in 
g, followed by subsequent losses (for reviews, see Clarke & 
Clarke, 1989; Jensen, 1989; Spitz, 1986). 

Alternatively, we believe g has much to offer interven­
tions-not as a direct target, but as a consequence of creating 
treatment expectancies. For example, 10 to 25-year follow-up 
studies stressed the importance of g, as both a risk and a pro­
tective factor for children with attention-deficit/hyperactivity 
disorder (ADHD; Klein & Manuzza, 1991; Loney, Kramer, 
& Milich, 1981; Manuzza, Gittelman-Klein, Bessler, Malloy, 
& LaPadula, 1993; Weiss & Hechtman, 1993). IQ not only 
predicted academic performance in high school for individu­
als with AD HD (the most common expectancy) but also served 
as a risk and/or protective factor across multiple peripheral 
outcomes past high school. IQ was a significant indicator of 
whether children with ADHD had positive family relationships 
after high school, self-evaluations of their emotional adjust­
ment as adults, and objective data dealing with adult psychi­
atric diagnoses, work performance, and socialization. Clearly, 
this information holds substantial treatment implications: 
Children with ADHD who have lower overall IQs will require 
more intensive interventions than those with higher IQs. In­
deed, one need look no further for treatment implications than 
graduate training programs in school and clinical child psy­
chology, where faculty take great pride in selecting the best 
and brightest as the targets of their interventions. Thus, to say 
g has no treatment validity is to miss the mark. 

Conclusion 

The history of psychology and education is littered with "ad­
vancements," whose benefits were later diminished, or refuted, 
when held up to empirical scrutiny. Throughout, IQ testing 
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has endured. It has withstood blistering attacks from critics, 

as well as improper use by advocates. If psychologists and 

other assessment specialists intend to accurately evaluate the 

abilities of children and adolescents, they must shift focus 

from popular practices to interpretations based on sound re­

search. This means psychologists must begin to recognize fun­

damental distinctions between factor-based versus inductively 

derived subtest groupings, between observed scores versus ip­

satized scores, and, as found here, between observed scores 

versus latent constructs. IQ tests are useful, but only if we in­

terpret their scores correctly. 

NOTES 

I. The PO and PO faetors in Models 6 and 7, respeetively, resulted 
in improper solutions as a consequence of multicolinearities. At­
tempts were made to constrain one or more parameters in the two 
models in order to arrive at proper solutions (i.e., a parameter was 
constrained to 0). However, removing the FD and PO factors would 
be inappropriate because it is a viable construct in the WISC-III 
and thcir obscrvcd scorcs arc frequently interpreted by psychol­
ogists. Therefore, the FD and PO constructs were not removed, 
and their presence in Models 6 and 7 resulted in improper solu­
tions. 

2. The degrec of freedom of Models 5 and 9 is the same (i.e., cll = 
70). Therefore, it is not possible to present the p value. 

3. The YC, FD, and PO factors in Models 5, 6, and 7, respectively, 
resulted in Heywood cases as a consequence of multicolineari­
ties. Attempts were made to constrain one or more parameters in 
the two models in order to arrive at proper solutions (i.e., a para­
meter was constrained to 0). However, removing the YC, FD, and 
PO factors would be inappropriate because they are viable con­
structs in the WISC-III and their observed scores are frequently 
interpreted by psychologists. Therefore, the YC, FD, and PO con­
structs were not removed, and their presence in Models 5, 6, and 
7 resulted in improper solutions. 

4. An initial analysis of Model 8 found that the error variance of the 
Mathematics Reasoning trait was negative (Heywood case) due 
to multicolinearities among FD, PO, and the mathematics achieve­
ment subtests. Therefore, this variance was constrained to 0 in 
order to obtain proper solutions. 
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Appendix 

Calculating IQ-Achievement 
Discrepancies From Latent Traits 

Psycholog ists are fa milia r with the use o f observed scores used during 
regress ion -discrepa ncy analys is. By contrast, if they want to employed 
constructs from the current stud y to predict reading achievement, they 
need to complete the following steps. 

1. Convert a ll observed WISC-III subtest standard scores to z scores. 
The conversion is necessary because standard scores for the WISC-III's 
obse rved factors a re expressed w ith means of 100 and standard devia­
tions of 15. By contras t, the sca les o f constructs (i. e., VC, PO, FD, PS, 
and g ) used in SEM are expressed as z scores (Ms = 0.0, SDs = 1.0). 

2. Estimate the cova ria nce matri x for la tent endogenous variables 
(i .e., YC, PO , FD , and PS i. 

Cova ri a nce matrix of 11, f (11) = r ,'. <t> ,'. r' + 'I' 

where 11 is a n m x 1 vector of endogenous latent va ri a bles, m is a num­
ber of endogenous va ri a bles , r is an m X k matri x of regress ion coeffi ­
cients rela ting endogenous variables to exogenous va ri a bles , <t> is a 
cova ri a nce mat rix of S, w hich is 1, beca use there are only exogenous 
variables in the current analys is, S is la tent exogenous vari able, r' is the 
tra nspose of r , 'I' is a n m X m cova ri ance matri x of, and S, is an m X 1 

vector of di sturbance te rms. 
3. Estimate first-orde r factor scores, w hich are la tent endogenous 

variables (i. e., 11). 

where N y is the transpose of m x p matrix of factor loadings, p is a 
number o f indica tors of 11, )' is the observed indicators of 11, a nd 2: -1 is 
the inve rse of population cova ria nce matrix. 

4 . Es timate the second-order factor score, which is a latent ex­
ogenous vari a ble (i. e. , S) . 

S =c!> " r "f (11 )-I" ' 11 

5. Conve rt the es timated 11 S and S back to a scale score of mean 
of 100 and standa rd devia tion of 15 . 

6. Estimate expected rea ding score using the fa milia r univariate 
regress ion equat ion (see Thorndike, 1963, for the equa tion and Glut­
ting, M cDermott, Prifite ra , & McGrath , 1994, for an app lied di scus­
sion). For example, for reading ac hievement, the best-fitting model was 
Model 9 . Thus, the o utput of Model 9 ca n be used with the following 

equation to predict reading achievement on the Bas ic Reading a nd 
Reading Comprehension tra its fro m the W IAT: 

where Y"g is the regress ion coeffi cient of g on Reading, Sg is the esti ­
mated exogenous va ria ble of g, S" is the di sturbance term o f Reading, 
~"vc is the reg ression coeffi cient of Verba l Comprehension o n Reading, 
11 vc is the estimated endogenous va ri a ble o f Verba l Comprehensio n, ~" " O 
is the regress ion coeffi cient of PO on Reading, 111'0 is the est imated en­
dogenous vari a ble of PO. Equa tions used to estimate the cova ri ance 
matrix are as follows: (a) endogeno us va ri a bles, (b) fir st-order facto rs, 
and (c) second-order facto r scores, which were obta ined fro m Bollen 
(1989) and Dr. Edward Rigdon (persona l communica tion, Ja nua ry 3, 
2002) . 

Case Example 
Assume a child, John, obta ined a standard score of 75 on the WIAT 
Reading Composite. His obta ined standa rd scores were a ll 10 on sub­
tests comprising the o bse rved Perceptua l O rga nizatio n, Freedom From 
Distractibili ty, and Processing Speed factors of the WISC-III . By con ­
trast, hi s observed standard score on the Info rmation subtest was 7 ; hi s 
standard score on Voca bula ry was 7, hi s scores o n Simila riti es was 7; 
and hi s score on Comprehension was 9 . T herefo re, hi s z scores we re as 
follows: - 1.0 for Information, - 1.0 for Voca bulary, - 1.0 fo r Simila ri ­
ti es, - 0. 33 for Comprehension, a nd 0 fo r the o the r subtests (Step 1). 
Converting produces the elements o f vector )', w hich a re the o bserved 
indicators of h from the equa tion (Step 2) . 

They are as follows: - I 
- I 
- I 
- .33 
0 
0 

)'= 0 
12x l 0 

0 
0 
0 
0 
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Estimates of the first- and second-factor scores using the Excel 
application are shown below (Steps 2-4): 

- 0. 7041 7 
11 = - 0.24744 

4x I - 0.35017 
- 0.25947 

S = - 0.42614 

Converted estimates of llS and S to means of 100 and standard devia­
t ions of 15 produces the va lue of 89.43 (i.e., 89 .43 = - 0.7041 7 x 15 + 
100) for Verbal Comprehension, 96.29 fo r Perceptual Organization, 
94.75 for Freedom From Distractibility, 96 .11 for Process ing Speed, and 
96.61 for the Full Sca le IQ (S tep 5) . 

Jo hn 'S expected reading achievement score is 95 .01 (Step 6). Es­
timates of ~IlVC' ~ 1l J>O ' "i1l8' and, SR (.30, - .39, .96, and 12.99, respectively) 
were obta ined from the AMOS o utput and take into account random 

measurement error. Inserting these va lues into the predicted-achievement 
equation tesults in the following : 

EXP. ACHRcading = (.30 .:. 89.43) + (-.39 ., 96.29) + (.96 .:. 96.61) + 12.99 
= 95.01 

John 's obtained composite Reading Index on the WIAT was 75. 
This score is below his expected reading score as estimated from his ob­
tained, multiple-ability tra it scores. The resultant z score for the dis­
crepa ncy between obtained and expected achievement is 3.91 (see the 
fo llowing eq uation). 

z = IEXP. ACH - OBT. ACH I 

SD ACH ~ 1 - r
2

1Q/ ACH 

This va lue corresponds to a prevalence of less than 0.01 % and suggests 
that John m ay be eligible for classification as lea rning disa bled. 


