

Diagnostic Utility of the Learning Disability Index

Marley W. Watkins, Joseph C. Kush, and Barbara A. Schaefer

Abstract

The Learning Disability Index (LDI) is one of many diagnostic indicators proposed for the identification of students with learning disabilities that relies on patterns of performance on cognitive tests. The LDI is hypothesized to relate to students' specific neuropsychological deficits. The present study investigated the diagnostic utility of the LDI with the third edition of the Wechsler Intelligence Scale for Children by comparing students previously diagnosed with learning disabilities ($n = 2,053$) to students without learning disabilities ($n = 2,200$). Subsamples of youth with specific reading ($n = 445$) and math ($n = 168$) disabilities permitted further assessment of the efficacy of the LDI. Receiver operating characteristic (ROC) curves revealed that the LDI resulted in a correct diagnostic decision only 55% to 64% of the time. These results demonstrate that the LDI is not a valid diagnostic indicator of learning disabilities.

The identification of students with learning disabilities (LD) in need of special education services is beset with complexity (Chalfant, 1989; Kavale & Forness, 2000). Although some experts have perceived an emerging consensus on diagnostic definitions and procedures (Hammill, 1990), others have continued to see a host of problems (Stanovich, 1999). Given that students with learning disabilities account for more than 50% of the 5 million students enrolled in special education programs in the United States (U. S. Department of Education, 1999), valid diagnostic criteria are crucial to ensure that students receive appropriate educational services (Reschly, 1997).

To this end, state departments of education have promulgated criteria for identifying students with learning disabilities. Although these criteria are not uniform in their requirements, an ability-achievement discrepancy standard is included by most states (Mercer, Jordan, Allsopp, & Mercer, 1996). However, some researchers have proposed that academic achievement alone be used to identify students with learning disabilities (Siegel, 1989), whereas other diagnosticians have

suggested procedures that focus on students' performance patterns on cognitive tests (Bannatyne, 1974; Kaufman, 1994; Mayes, Calhoun, & Crowell, 1998; Strauss, Spreen, & Hunter, 2000).

Of the many cognitive test patterns that have been advanced as diagnostic of learning disabilities, the Learning Disability Index (LDI; Lawson & Inglis, 1984) is of particular interest because it has been hypothesized to relate to specific neuropsychological deficits of students with learning disabilities (Lawson & Inglis, 1985). Lawson and Inglis (1984, 1985) conjectured that Wechsler Intelligence Scale for Children-Revised (WISC-R; Wechsler, 1974) subtests are sensitive to the presence of learning disabilities in direct proportion to their verbal saturation, which is in turn related to left-hemisphere dysfunction. This theoretical link between test scores and brain functioning is important because contemporary definitions of learning disabilities specify an endogenous etiology related to "central nervous system dysfunction" (Hammill, 1990, p. 82).

Comparisons of groups of students with and without learning disabilities have found significantly higher mean

LDI scores among students with learning disabilities than among students in general education (Bellemare, Inglis, & Lawson, 1986; Clampit & Silver, 1990; Lawson & Inglis, 1985; Tittemore, Lawson, & Inglis, 1985). Statistically significant LDI differences between groups have been subsequently interpreted as evidence that the LDI is diagnostically effective. For example, Kaufman (1990) concluded that the LDI taps a sequential-simultaneous processing dimension and is "quite valuable for distinguishing learning-disabled children from normal children" (p. 354).

However, Meehl and Rosen (1955) warned psychologists that they would be misled if they used "validity" or "discrimination" between groups to justify diagnostic decision making. More recently, Elwood (1993) cautioned that "significance alone does not reflect the size of the group differences nor does it imply the test can discriminate subjects with sufficient accuracy for clinical use" (p. 409). Thus, the accuracy of the LDI in diagnosing students with learning disabilities awaits determination through the application of appropriate diagnostic utility statistics (Kessel & Zimmerman, 1993; Zarin & Earls, 1993).

Contemporary use of the LDI is also constrained because it was developed with the WISC-R. That scale has been replaced by the Wechsler Intelligence Scale for Children-Third Edition (WISC-III; Wechsler, 1991). Like its predecessor, the WISC-III is the most popular intellectual measure used to determine eligibility for special education services (Wilson & Reschly, 1996). Although the WISC-III is a direct descendant of the WISC-R, only about 73% of the WISC-R items were retained in the WISC-III (Edwards & Edwards, 1993). Moreover, materials and administration procedures were revised for the WISC-III. These changes make it difficult to know whether the results of previous LDI research can be applied to the WISC-III (Strauss et al., 2000).

Given the profound influence that diagnostic decisions have in childrens' lives (Dahlstrom, 1993), it is important to fully delineate the diagnostic utility of any indicator used to classify or program for children. Consequently, the present study investigated the diagnostic utility of the WISC-III LDI among a large group of children previously diagnosed with learning disabilities.

Method

Instrument

The WISC-III (Wechsler, 1991) is an individually administered test of intellectual ability for children ages 6 years 0 months through 16 years 11 months. It consists of 10 mandatory subtests and 3 optional subtests ($M = 10$; $SD = 3$) that combine to yield Verbal (VIQ), Performance (PIQ), and Full Scale (FSIQ) IQs ($M = 100$; $SD = 15$). When 12 subtests are administered, it yields the following four factor index scores: Verbal Comprehension (VC), Perceptual Organization (PO), Freedom from Distractibility (FD), and Processing Speed (PS). When the 10 mandatory subtests are administered, it yields two factor index scores (VC and PO). Full details of the instrument are available in Wechsler (1991).

Procedure

Based on Department of Education records, all 212 special education directors of Arizona school districts were contacted and asked to provide anonymous WISC-III data on students currently enrolled in their special education programs. Personnel from 40 school districts responded with anonymous data on 2,979 students in special education with current psychoeducational evaluations on file (i.e., WISC-III administered within the past 3 years). Of this number, 2,274 students were categorized as having learning disabilities. All participants were diagnosed independently by school district multidisciplinary teams (MDT) based on federal and Arizona special education rules and regulations that required the demonstration of a significant ability-achievement discrepancy exclusive of sensory impairment, mental retardation, emotional disturbance, and environmental, cultural, or economic disadvantage.

Participants

Students with Learning Disabilities. Congruent with previous surveys of practitioners (Canivez & Watkins, 1998), optional WISC-III subtests were found to be infrequently administered. However, to maintain consistency with WISC-R LDI research, 10 mandatory subtests and 1 optional subtest (Digit Span) were necessary for the computation of LDI scores. Based on this requirement, 2,053 students with learning disabilities from 37 school districts participated in the current study.

Students were determined by local MDT to exhibit learning disabilities in reading alone ($n = 160$), math alone ($n = 137$), written expression alone ($n = 412$), reading and written expression ($n = 580$), reading and math ($n = 63$), math and written expression ($n = 203$), reading, math, and written expression ($n = 493$), and not specified ($n = 5$). Boys constituted 71.9% of the sample and girls 28.1%. Mean age was

10.7 years ($SD = 2.6$) and ranged from 6 to 16 years. Median grade placement was 5.0, with a range of kindergarten through 11. Ethnic background, as reported on school records, was 67.7% White, 17.3% Hispanic, 5.1% Black, 9.3% Native American, and 0.6% Asian/Pacific. Because data were anonymously retrieved from archival special education records, socioeconomic status could not be determined. However, the participants were distributed across rural, urban, and suburban school districts and were widely dispersed across the state.

Specific Reading Disability. A subsample of participants was identified to allow specialized analyses for students with specific reading disabilities. Selection criteria included

1. identification of a learning disability in reading by a MDT;
2. discrepancy of 15 or more points between predicted (via regression on FSIQ) and actual reading achievement;
3. no identification as having a learning disability in math by a MDT; and
4. discrepancy of less than 15 points between predicted (via regression on FSIQ) and actual math achievement.

These criteria selected 445 students from the larger sample of children with learning disabilities. Whereas the general learning disabilities group was marked by average FSIQ-reading and FSIQ-math discrepancies of 9.4 and 5.6 points, respectively, the subsample with specific reading disabilities had average discrepancies in reading and math of 22.1 and 1.9 points, respectively. Their mean cognitive and achievement scores are provided in Table 1.

Specific Math Disability. A second subsample of participants was identified to allow specialized analyses for students with specific math disabilities. Selection criteria included,

TABLE 1
Descriptive Statistics for Cognitive, Achievement, and Learning Disability Index (LDI) Scores for Participants with Learning Disabilities

Measure	LD ^a		Reading LD ^b		Math LD ^c	
	M	SD	M	SD	M	SD
Information	7.73	2.75	8.33	2.50	7.87	2.43
Similarities	8.36	3.11	9.11	2.74	8.65	2.95
Arithmetic	7.33	2.58	8.59	2.57	6.18	2.21
Vocabulary	7.79	2.89	8.47	2.63	7.92	2.73
Comprehension	8.74	3.25	9.63	2.85	8.57	2.82
Digit Span	7.32	2.50	7.82	2.40	7.12	2.44
Picture Completion	9.47	2.92	10.10	2.66	9.34	2.92
Picture Arrangement	8.97	3.27	10.02	3.06	8.43	3.17
Block Design	8.89	3.20	10.13	3.07	7.97	3.18
Object Assembly	9.31	3.12	10.28	3.01	8.82	3.14
Coding	8.43	3.21	9.47	3.25	7.76	3.18
Verbal IQ	88.8	13.3	93.5	11.3	87.8	11.7
Performance IQ	94.2	13.9	100.4	12.5	90.8	13.9
Full Scale IQ	90.5	12.8	96.3	10.8	88.2	12.1
Reading	81.1	13.2	74.2	9.2	90.8	10.5
Math	84.9	14.4	94.4	10.6	70.3	10.1
Writing	76.8	11.1	77.7	10.9	79.4	10.5
LDI	140.0	356.0	177.7	339.6	56.6	320.0

^an = 2,053. ^bn = 445. ^cn = 168.

1. identification of a learning disability in math by an MDT;
2. discrepancy of 15 or more points between predicted (via regression on FSIQ) and actual math achievement;
3. no identification as having a learning disability in reading by an MDT; and
4. discrepancy of less than 15 points between predicted (via regression on FSIQ) and actual reading achievement.

These criteria selected 168 students. The subsample with specific math disabilities had average discrepancies in reading and math of -2.6 and 17.9 points, respectively. Their mean cognitive and achievement scores are also presented in Table 1.

Students Without Disabilities. The United States WISC-III standardization sample of 2,200 children ages 6 years 0 months through 16 years 11 months served as controls. See Wechsler (1991) for a complete description of the WISC-III standardization sample.

Analyses

LDI. Following the method provided by Lawson and Inglis (1984, 1985), the average intercorrelation matrix from the WISC-III standardization sample (Wechsler, 1991) was subjected to an unrotated principal components analysis. Table 2 provides the results of the two-factor solution in terms of factor loadings and their associated factor score coefficients. As with the WISC-R, the first component reflects a general

factor, whereas the second component reveals a verbal–nonverbal dimension.

LDI scores were calculated according to the following formula:

$$\text{LDI} = \sum [W_i(X_i - M)]$$

where W_i is the Factor II score coefficient of the i^{th} subtest multiplied by 100 to remove decimal points, X_i is the participant's scaled score on the i^{th} subtest, and M is the participant's average scaled score across all eleven subtests.

Diagnostic Utility. There are four possible outcomes when using a LDI score to diagnose learning disabilities: *true positive*, *true negative*, *false positive*, and *false negative*. Two outcomes are correct (true positive and true negative) and two are incorrect (false positive and false negative). True positives are children with learning disabilities who are correctly identified as such by the LDI. False positives are children identified by the LDI as having a learning disability who do not actually have a learning disability. In contrast, false negatives are children with learning disabilities who are not identified by the LDI as having learning disabilities. A test with a low false negative rate has high *sensitivity* and a test with a low false positive rate has high *specificity*.

Although sensitivity and specificity are both desirable attributes of a diagnostic test, they are dependent on cutoff score and prevalence rate. Thus, neither provides a unique measure of diagnostic accuracy (McFall & Treat, 1999). In contrast, by systematically using all possible cutoff scores of a diagnostic test and graphing true positive against false positive decision rates, the full range of that test's diagnostic utility can be determined. Designated the *receiver operating characteristic* (ROC), this procedure was originally applied more than 50 years ago to determine how well an electronic receiver was able to distinguish signal from noise (Dawson-Saunders & Trapp, 1990). Because they are not confounded by cutoff scores and prevalence rates, ROC methods have

subsequently been widely adopted in the physical (Swets, 1988), medical (Dawson-Saunders & Trapp, 1990; Hsiao, Bartko, & Potter, 1989), and psychological (Swets, 1996) sciences. They have also found occasional application in special education (Harber, 1981). More recently, ROC methods were strongly endorsed for judging the accuracy of psychological assessments (McFall & Treat, 1999; Swets, Dawes, & Monahan, 2000).

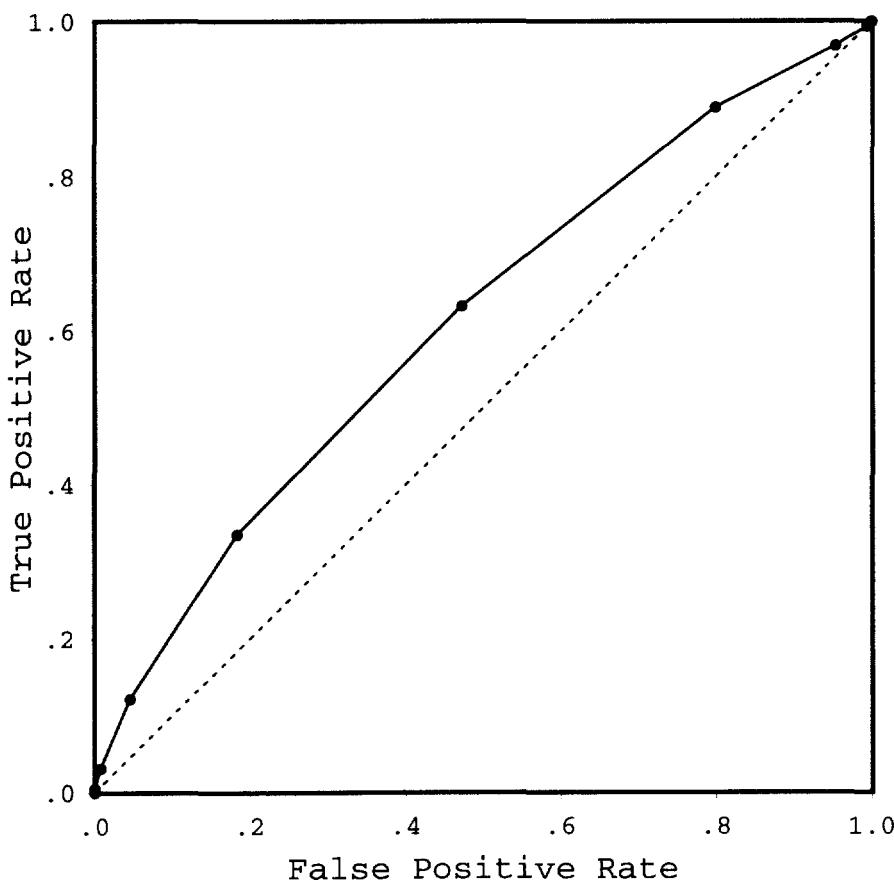
As illustrated in Figure 1, the diagonal dashed line is the random ROC or *chance line* that indicates zero discriminating power. The more clearly a test is able to discriminate between individuals with and without the target disorder, the farther its ROC curve will deviate toward the upper left corner of the graph. The accuracy of a ROC can be quantified by calculating the area under its curve. Although both parametric and nonparametric calculation methods are available (Swets, 1988), nonparametric methods produce accurate area estimates without assuming that distributions are normal and of equal variance (Centor, 1985; Swets, 1996). Consequently, a nonparametric method was used to calculate the area under the curve (Hanley & McNeil, 1982). Chance diagnostic performance corresponds to an area under the curve of .50, whereas perfect diagnostic performance equates to 1.00. The area under the curve is independent of the cutoff score and the base rate and does not assume that the underlying score distributions are normal. It can be interpreted in terms of two children, one drawn randomly from the distribution of children with the target disorder and one selected randomly from the population of children without the disorder. The area under the curve is the probability of the test correctly rank ordering the children into their appropriate diagnostic groups (Hanley & McNeil, 1982). According to Swets (1996), areas under the curve between .50 and .70 are characterized as showing low accuracy, .70 to .90 represent medium accuracy, and .90 to 1.00 denote high accuracy.

TABLE 2
Factor Loadings and Factor Score Coefficients from Principal Components Analysis of the WISC-III

Measure	Factor loadings		Factor score coefficients	
	I	II	I	II
Information	.80	-.29	.15	-.28
Similarities	.79	-.30	.15	-.29
Arithmetic	.74	-.12	.14	-.12
Vocabulary	.81	-.30	.16	-.29
Comprehension	.72	-.31	.14	-.31
Digit Span	.51	-.04	.10	-.04
Picture Completion	.66	+.21	.13	+.20
Picture Arrangement	.59	+.31	.11	+.30
Block Design	.73	+.35	.14	+.34
Object Assembly	.66	+.44	.13	+.43
Coding	.40	+.44	.08	+.43
Percentage variance	46.9	9.3		

Note. Standardization data of the *Wechsler Intelligence Scale for Children-Third Edition*. Copyright © 1990 by The Psychological Corporation. Used by permission. All rights reserved.

Results


LDI scores for students from the WISC-III standardization sample averaged -6.37 with a standard deviation of 328.9 (see Note). These results are similar to LDI scores from the WISC-R standardization sample (viz., $M = 3.2$, $SD = 306.4$; Lawson & Inglis, 1984). In contrast, LDI scores for students with learning disabilities are presented in Table 1. As with the WISC-R (Belle-mare et al., 1986; Clampit & Silver, 1990; Lawson & Inglis, 1985), LDI scores of the WISC-III standardization sample were statistically significantly different from LDI scores of students with learning disabilities, $t(4,251) = 13.93$, $p < .001$, students with specific reading disabilities, $t(2,643) = 10.70$, $p < .001$, and students with specific math disabilities, $t(2,366) = 2.40$, $p = .017$. Effect sizes ranged from .19 to .56.

ROC analyses indicated that LDI scores exhibited low diagnostic utility (Swets, 1996). As illustrated in Figure 1, an area under the curve of .61 resulted

when students with learning disabilities were compared to students from the WISC-III normative sample. That is, if one student was randomly selected from the students with learning disabilities and one from the WISC-III normative sample, the probability of the LDI correctly rank ordering them into their appropriate diagnostic groups was .61. Results for students with specific reading disabilities (area under the curve = .64) and specific math disabilities (area under the curve = .55) were also of low diagnostic accuracy. Notably, equivalent diagnostic accuracy was achieved by simply comparing all students with learning disabilities with reading or math achievement scores less than 85 to the WISC-III standardization sample (areas under the curve = .66 and .64, respectively).

Discussion

The use of cognitive subtest profiles or patterns to aid in the diagnosis of learning disabilities is common in train-

FIGURE 1. Receiver operating characteristic (ROC) curve of WISC-III Learning Disability Index (LDI) for students with learning disabilities ($n = 2,053$) and students from the WISC-III standardization sample ($n = 2,200$). The diagonal dashed line represents zero discriminating power, and the solid line displays the ROC of LDI. The area under the ROC curve is .61.

ing (Alfonso, Oakland, LaRocca, & Spanakos, 2000) and clinical practice (Kaufman, 1990, 1994). In fact, more than 75 patterns of subtest variation have been identified for the Wechsler scales alone (McDermott, Fantuzzo, & Glutting, 1990). One cognitive pattern specifically designed to identify students with learning disabilities is the LDI. Previous research demonstrated significant mean differences on the LDI when groups of students with learning disabilities were compared to groups of students without learning disabilities (Bellemare et al., 1986; Clampit & Silver, 1990; Lawson & Inglis, 1985). However, group null hypothesis tests are inadequate measures of diagnostic accuracy (Elwood, 1993; Meehl &

Rosen, 1955). Therefore, more appropriate ROC methods (McFall & Treat, 1999; Swets et al., 2000) were applied in this study to assess the accuracy of the WISC-III LDI in diagnosing students with learning disabilities. The results indicated that the WISC-III LDI exhibited low diagnostic accuracy. That is, relying on the LDI resulted in a correct diagnostic decision only 55% to 64% of the time. The simple alternative diagnostic indicator of low achievement was equally accurate.

These results demonstrate that the WISC-III LDI is not a valid diagnostic indicator of learning disabilities. The WISC-III developmental index, ACID profile, SCAD profile, profile variability index, and a number of variable

subtests have also proven to have little or no diagnostic utility in identifying children with learning disabilities (Watkins, 1996, 1999; Watkins, Kush, & Glutting, 1997a, 1997b; Watkins & Worrell, 2000). When considered within the broader negative context of subtest profile research (Glutting, McDermott, Konold, Snelbaker, & Watkins, 1998; Kramer, Henning-Stout, Ullman, & Schellenberg, 1987; McDermott, Fantuzzo, Glutting, Watkins, & Baggaley, 1992; McDermott & Glutting, 1997; Teeter & Korducki, 1998), the LDI is unsupported as a tool in the diagnosis of learning disabilities. Within the interpretative framework presented by Kamphaus (1998), using the LDI as an indicator of learning disabilities constitutes a case of acting in opposition to the scientific evidence.

ABOUT THE AUTHORS

Marley W. Watkins, PhD, is professor in charge of Graduate Programs in School Psychology at The Pennsylvania State University. His current research interests include psychological assessment and diagnosis. **Joseph C. Kush, PhD**, is an associate professor of school psychology at Duquesne University. His research interests include cognitive and intellectual theory and assessment. **Barbara A. Schaefer, PhD**, is an assistant professor of education at The Pennsylvania State University. Her current research interests are learning behaviors, educational and behavioral assessment, gender differences, and instrument development and scaling. Address: Marley W. Watkins, Pennsylvania State University, Department of Educational and School Psychology and Special Education, 227 CEDAR Bldg., University Park, PA 16802 (e-mail: mww10@psu.edu).

NOTE

Standardization data of the Wechsler Intelligence Scale for Children-Third Edition. Copyright © 1990 by The Psychological Corporation. Used by permission. All rights reserved.

REFERENCES

Alfonso, V. C., Oakland, T. D., LaRocca, R., & Spanakos, A. (2000). The course on individual cognitive assessment. *School Psychology Review, 29*, 52-64.

Bannatyne, A. (1974). Diagnosis: A note on recategorization of the WISC scale scores. *Journal of Learning Disabilities*, 7, 272-273.

Bellemare, F. G., Inglis, J., & Lawson, J. S. (1986). Learning disability indices derived from a principal components analysis of the WISC-R: A study of learning disabled and normal boys. *Canadian Journal of Behavioral Science*, 18, 86-91.

Canivez, G. L., & Watkins, M. W. (1998). Long term stability of the Wechsler Intelligence Scale for Children-Third Edition. *Psychological Assessment*, 10, 285-291.

Centor, R. M. (1985). An evaluation of methods for estimating the area under the receiver operating characteristic (ROC) curve. *Medical Decision Making*, 5, 149-156.

Chalfant, J. C. (1989). Learning disabilities: Policy issues and promising approaches. *American Psychologist*, 44, 392-398.

Clampit, M. K., & Silver, S. J. (1990). Demographic characteristics and mean profiles of learning disability index subsets of the standardization sample of the Wechsler Intelligence Scale for Children-Revised. *Journal of Learning Disabilities*, 23, 263-264.

Dahlstrom, W. G. (1993). Tests: Small samples, large consequences. *American Psychologist*, 48, 393-399.

Dawson-Saunders, B., & Trapp, R. G. (1990). *Basic and clinical biostatistics*. Norwalk, CT: Appleton & Lange.

Dumont, R., Farr, L. P., Willis, J. O., & Whalley, P. (1998). 30-second interval performance on the coding subtest of the WISC-III: Further evidence of WISC folklore? *Psychology in the Schools*, 35, 111-117.

Edwards, R., & Edwards, J. L. (1993). The WISC-III: A practitioner perspective [Monograph]. *Journal of Psychoeducational Assessment*, 144-150.

Elwood, R. W. (1993). Psychological tests and clinical discriminations: Beginning to address the base rate problem. *Clinical Psychology Review*, 13, 409-419.

Glutting, J. J., McDermott, P. A., Konold, T. R., Snelbaker, A. J., & Watkins, M. W. (1998). More ups and downs of subtest analysis: Criterion validity of the DAS with an unselected cohort. *School Psychology Review*, 27, 599-612.

Hammill, D. D. (1990). On defining learning disabilities: An emerging consensus. *Journal of Learning Disabilities*, 23, 74-84.

Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. *Radiology*, 143, 29-36.

Harber, J. R. (1981). Evaluating utility in diagnostic decision making. *The Journal of Special Education*, 15, 413-428.

Hsiao, J. K., Bartko, J. J., & Potter, W. Z. (1989). Diagnosing diagnoses. *Archives of General Psychiatry*, 46, 664-667.

Kamphaus, R. W. (1998). Intelligence test interpretation: Acting in the absence of evidence. In A. Prifitera & D. H. Saklofske (Eds.), *WISC-III clinical use and interpretation: Scientist-practitioner perspectives* (pp. 39-57). New York: Academic Press.

Kaufman, A. S. (1990). *Assessing adolescent and adult intelligence*. Boston: Allyn & Bacon.

Kaufman, A. S. (1994). *Intelligent testing with the WISC-III*. New York: Wiley.

Kavale, K. A., & Forness, S. R. (2000). What definitions of learning disability say and don't say: A critical analysis. *Journal of Learning Disabilities*, 33, 239-256.

Kessel, J. B., & Zimmerman, M. (1993). Reporting errors in studies of the diagnostic performance of self-administered questionnaires: Extent of the problem, recommendations for standardized presentation of results, and implications for the peer review process. *Psychological Assessment*, 5, 395-399.

Kramer, J. J., Henning-Stout, M., Ullman, D. P., & Schellenberg, R. P. (1987). The viability of scatter analysis on the WISC-R and the SBIS: Examining a vestige. *Journal of Psychoeducational Assessment*, 5, 37-47.

Lawson, J. S., & Inglis, J. (1984). The psychometric assessment of children with learning disabilities: An index derived from a principal components analysis of the WISC-R. *Journal of Learning Disabilities*, 17, 517-522.

Lawson, J. S., & Inglis, J. (1985). Learning disabilities and intelligence test results: A model based on a principal components analysis of the WISC-R. *British Journal of Psychology*, 76, 35-48.

Mayes, S. D., Calhoun, S. L., & Crowell, E. W. (1998). WISC-III profiles for children with and without learning disabilities. *Psychology in the Schools*, 35, 309-316.

McDermott, P. A., Fantuzzo, J. W., & Glutting, J. J. (1990). Just say no to subtest analysis: A critique on Wechsler theory and practice. *Journal of Psychoeducational Assessment*, 8, 290-302.

McDermott, P. A., Fantuzzo, J. W., Glutting, J. J., Watkins, M. W., & Baggaley, A. R. (1992). Illusions of meaning in the ipsative assessment of children's ability. *The Journal of Special Education*, 25, 504-526.

McDermott, P. A., & Glutting, J. J. (1997). Informing stylistic learning behavior, disposition, and achievement through ability subtests—Or, more illusions of meaning? *School Psychology Review*, 26, 163-175.

McFall, R. M., & Treat, T. A. (1999). Quantifying the information value of clinical assessments with signal detection theory. *Annual Review of Psychology*, 50, 214-241.

Mercer, C. D., Jordan, L., Allsopp, D. H., & Mercer, A. H. (1996). Learning disabilities definitions and criteria used by state education departments. *Learning Disability Quarterly*, 19, 217-232.

Meehl, P. E., & Rosen, A. (1955). Antecedent probability and the efficiency of psychometric signs, patterns, or cutting scores. *Psychological Bulletin*, 52, 194-216.

Reschly, D. J. (1997). Utility of individual ability measures and public policy choices for the 21st century. *School Psychology Review*, 234-241.

Rispens, J., Swaab, H., van den Oord, E. J., Cohen-Kettenis, P., van Engeland, H., & van Yperen, T. (1997). WISC profiles in child psychiatric diagnosis: Sense or nonsense? *Journal of the American Academy of Child and Adolescent Psychiatry*, 36, 1587-1594.

Siegel, L. S. (1989). IQ is irrelevant to the definition of learning disabilities. *Journal of Learning Disabilities*, 22, 469-479.

Stanovich, K. E. (1999). The sociopsychometrics of learning disabilities. *Journal of Learning Disabilities*, 32, 350-361.

Strauss, E., Spreen, O., & Hunter, M. (2000). Implications of test revisions for research. *Psychological Assessment*, 12, 237-244.

Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. *Science*, 240, 1285-1293.

Swets, J. A. (1996). *Signal detection theory and RIC analysis in psychology and diagnosis: Collected papers*. Mahwah, NJ: Erlbaum.

Swets, J. A., Dawes, R. M., & Monahan, J. (2000). Psychological science can improve diagnostic decisions. *Psychological Science in the Public Interest*, 1, 1-26.

Teeter, P. A., & Korducki, R. (1998). Assessment of emotionally disturbed children with the WISC-III. In A. Prifitera & D. H. Saklofske (Eds.), *WISC-III clinical use and interpretation: Scientist-practitioner perspectives* (pp. 119-138). New York: Academic Press.

(continued on p. 136)

ical and contemporary lessons for research and clinical practice. *Clinical Neuropsychologist*, 13, 386-395.

Scanlon, D. M., & Vellutino, F. R. (1996). Prerequisite skills, early instruction, and success in first-grade reading: Selected results from a longitudinal study. *Mental Retardation and Developmental Research Reviews*, 2, 54-63.

Scarborough, H. S. (1998a). Early identification of children at risk for reading. In B. K. Shapiro, P. J. Accardo, & A. J. Capute (Eds.), *Specific reading disability* (pp. 75-120). Timonium, MD: York Press.

Scarborough, H. S. (1998b). Predicting the future achievement of second graders with reading disabilities: Contributions of phonemic awareness, verbal memory, rapid naming, and IQ. *Annals of Dyslexia*, 48, 115-136.

Schatschneider, C., Carlson, C. D., Francis, D. J., Foorman, B., & Fletcher, J. M. (in press). Relationship of rapid automatized naming and phonological awareness in early reading development. *Journal of Learning Disabilities*.

Schatschneider, C., Francis, D. J., Fletcher, J. M., & Foorman, B. R. (in press). The relationship between rapid automatized naming and phonological awareness in the prediction of early reading skills. *Journal of the International Neuropsychological Society*.

Semel, E., Wiig, E. H., & Secord, W. (1987). *Clinical evaluation of language fundamentals-Revised*. San Antonio, TX: Psychological Corp.

Snow, C. E., Burns, M. S., & Griffin, P. (1998). *Preventing reading difficulties in young children*. Washington, DC: National Academy Press.

Stanovich, K., & Siegel, S. (1994). Phenotypic performance profile of children with reading disabilities. *Journal of Educational Psychology*, 86, 24-53.

Tabachnick, B. G., & Fidell, L. S. (2001). *Using multivariate statistics*. Boston: Allyn & Bacon.

Torgesen, J. K., & Mathes, P. G. (2000). *A basic guide to understanding, assessing, and teaching phonological awareness*. Austin, TX: PRO-ED.

Torgesen, J. K., & Wagner, R. K. (1998). Alternative diagnostic approaches for specific developmental reading disabilities. *Learning Disabilities Research & Practice*, 13, 220-232.

Torgesen, J. K., Wagner, R. K., & Rashotte, C. A. (1999). *Test of word reading efficiency*. Austin, TX: PRO-ED.

Torgesen, J. K., Wagner, R. K., Rashotte, C. A., Burgess, S., & Hecht, S. (1997). Contributions of phonological awareness and rapid automatic naming to the growth of word-reading skills in second- to fifth-grade children. *Scientific Studies of Reading*, 1(2), 161-185.

Tucker, L. R., & Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis. *Psychometrika*, 38, 1-10.

U.S. Bureau of the Census. (1999). *Statistical abstract of the United States: The national data book*. Washington, DC: Author.

Wagner, R. K., Torgesen, J. K., & Rashotte, C. A. (1999). *Comprehensive test of phonological processing*. Austin, TX: PRO-ED.

Wechsler, D. (1991). *Wechsler intelligence scale for children* (3rd ed.). San Antonio, TX: Psychological Corp.

Wheaton, B., Muthén, B., Alwin, D. F., & Summers, G. F. (1977). Assessing reliability and stability in panel models. In D. R. Heise (Ed.), *Sociological methodology* (pp. 84-136). San Francisco: Jossey-Bass.

Wolf, M. (1991). Naming speed and reading. *Reading Research Quarterly*, 26, 123-141.

Wolf, M., & Bowers, P. G. (2000). Naming speed deficits in developmental reading disabilities. *Journal of Learning Disabilities*, 33, 322-324.

Wolf, M., Bowers, P. G., & Biddle, K. (2000). Naming-speed processes, timing, and reading. *Journal of Learning Disabilities*, 33, 387-407.

Woodcock, R. (1988). *Woodcock reading mastery tests-Revised*. Circle Pines, MN: American Guidance Services.

(continued from p. 103)

Tittemore, J. A., Lawson, J. S., & Inglis, J. (1985). Validation of a learning disability index (LDI) derived from a principal components analysis of the WISC-R. *Journal of Learning Disabilities*, 18, 449-454.

U. S. Department of Education. (1999). *Twenty-first annual report to congress on the implementation of the Individuals with Disabilities Education Act*. Washington, DC: Author.

Watkins, M. W. (1996). Diagnostic utility of the WISC-III developmental index as a predictor of learning disabilities. *Journal of Learning Disabilities*, 29, 305-312.

Watkins, M. W. (1999). Diagnostic utility of WISC-III subtest variability among students with learning disabilities. *Canadian Journal of School Psychology*, 15, 11-20.

Watkins, M. W., Kush, J. C., & Glutting, J. J. (1997a). Prevalence and diagnostic utility of the WISC-III SCAD profile among children with disabilities. *School Psychology Quarterly*, 12, 235-248.

Watkins, M. W., Kush, J. C., & Glutting, J. J. (1997b). Discriminant and predictive validity of the WISC-III ACID profile among children with learning disabilities. *Psychology in the Schools*, 34, 309-319.

Watkins, M. W., & Worrell, F. C. (2000). Diagnostic utility of the number of WISC-III subtests deviating from mean performance among students with learning disabilities. *Psychology in the Schools*, 37, 303-309.

Wechsler, D. (1974). *Wechsler intelligence scale for children-Revised*. San Antonio, TX: Psychological Corp.

Wechsler, D. (1991). *Wechsler intelligence scale for children* (3rd ed.). San Antonio, TX: Psychological Corp.

Wilson, M. S., & Reschly, D. J. (1996). Assessment in school psychology training and practice. *School Psychology Review*, 25, 9-23.

Zarin, D. A., & Earls, F. (1993). Diagnostic decision making in psychiatry. *American Journal of Psychiatry*, 150, 197-206.