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Abstract

Introduction: Computerized neuropsychological testing is a cornerstone of sport-related concussion assessment. Female
soccer players are at an increased risk for concussion as well as exposures to repetitive head impacts from heading a soccer
ball. Our primary aim was to examine factorial validity of the Automated Neuropsychological Assessment Metrics (ANAM)
neuropsychological test battery in computing the multiple neurocognitive constructs it purports to measure in a large cohort of
interscholastic female soccer players.
Methods: Study participants included 218 interscholastic female soccer players (age = 17.0±0.7 year; mass = 55.5±6.8 kg;
height = 164.7±6.6 cm) drawn from a large (850+) prospective database examining purposeful heading from four area high
schools over a 10-year period. The ANAM-2001 measured neurocognitive performance. Three methods were used to identify
integral constructs underlying the ANAM: (a) exploratory factor analysis (EFA), (b) first-order confirmatory factor analysis
(CFA), and (c) hierarchical CFA.
Results: Neuropsychological phenomena measured by the ANAM-2001 were best reproduced by a hierarchical CFA organiza-
tion, composed of two lower level factors (Simple Reaction Time, Mental Efficiency) and a single, general composite. Although
the ANAM was multidimensional, only the composite was found to possess sufficient construct dimensionality and reliability
for clinical score interpretation. Findings failed to uphold suppositions that the ANAM measures seven distinct constructs, or
that any of its seven tests provide unique information independent of other constructs, or the composite, to support individual
interpretation.
Conclusions: Outcomes infer the ANAM possesses factorial-validity evidence, but only scores from the composite appear to
sufficiently internally valid, and reliable, to support applied use by practitioners.
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Introduction

Validity is fundamental to the clinical interpretation of test scores. The reason is because validity makes clear the meaning that
can be attached to those scores (Cohen, Swerdlik, & Sturman, 2017; Cronbach & Meehl, 1955; Gregory, 2014; Messick, 1989;
Reynolds, Livingston, & Willson, 2009; Salvia, Ysseldyke, & Whitmer, 2017). The Standards for Educational and Psychological
Testing identify five types of validity evidence that must be considered when evaluating test scores: (a) content indicators, (b)
support grounded in response processes, (c) intended/unintended consequences, (d) criterion-related outcomes, and (e) a test’s
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internal structure (American Educational Research Association, American Psychological Association, & National Council on
Measurement in Education, 2014).

Evidence about a test’s factor structure is vital to clinicians because factor analysis serves as the internal rationale for
determining which scores practitioners should, or should not, interpret (Braden, 2013; Braden & Niebling, 2012; Canivez &
Youngstrom, 2019; Furr, 2011). Essentially, factor analysis determines whether a test’s actual structure matches its theoretical
framework. Structural validity evidence is especially important for tests that are used for high-stakes decisions. For example,
the Automated Neuropsychological Assessment Metrics (ANAM), a computer-based battery of 30 cognitive tests, has been
extensively applied in military, athletic, and medical contexts for important diagnostic, eligibility, and treatment decisions
(Kaminski, Groff, & Glutting, 2009; Reeves, Winter, Bleiberg, & Kane, 2007; Rice et al., 2011). The ANAM offers three
scores for each test: speed, accuracy, and throughput (accuracy/speed) as well as a composite score for interpretation.

The ANAM’s relationship to other traditional neuropsychological tests (Trail Making, PASAT, HVLT, Stroop Color-Word,
COWAT, etc.) used in sport-related concussion assessment has been previously examined and confirmed by several author groups
(Bleibert, Kane, Reeves, Garmoe, & Halpern, 2000; Lovell & Collins, 1988; Schretlen, 1997; Woodard et al., 2002). Thus, these
scores can assist clinicians in gaining an understanding of the amount of insult to brain processes involving higher order thinking,
reaction time, and executive functioning.

A search for validity evidence to support the ANAM scoring structure was conducted across electronic databases including:
Medline, PsycINFO, and ERIC using combinations of the paired terms “a” and “b” and their acronyms: (a) ANAM, (b) factor
analysis, (b) principal component analysis (PCA), (b) exploratory factor analysis (EFA), (b) confirmatory factor analysis (CFA),
(b) construct validity, (b) factorial validity, and (b) internal structure. Primary sources were read and searched for other articles.

We located only eight studies, which explored the ANAM’s structure. The finding is surprising given the ANAM’s widespread
use and longevity—it was first published nearly 30 years ago (Reeves et al., 2007) and has been administered to more than
100,000 examinees (Vincent, Roebuck-Spencer, Gilliland, & Schlegel, 2012). Two investigations were excluded because they
were conference/poster presentations and never appeared in a juried journal (Retzlaff & Vanderploeg, 1999; Roskos, Feller, &
Chibnall, 2014). One peer-reviewed publication was rejected because its analyses were limited to item scores from the ANAM’s
Mood Scale (Johnson, Vincent, Johnson, Gilliland, & Schlege, 2008). This left five articles: (a) Bleibert et al. (2000), (b) Jones,
Loe, Krach, Rager, and Jones (2008), (c) Kabat, Kane, Jefferson, and DiPino (2001), (d) Naifeh et al. (2016), and (e) Short,
Cernich, Wilken, and Kane (2007).

Sample characteristics were highly diverse and included: high school and college students, undergraduates (attending an
urban, southwestern university), outpatients seen for neuropsychological evaluations at two VA medical centers, a large cohort
of military personnel, and patients with multiple sclerosis and their normal controls. Evidence regarding factorial validity was
similarly diverse; the number of accepted constructs varied considerably, with several studies containing multiple analyses.
Results produced a one-factor EFA solution using throughput scores (Naifeh et al., 2016), a single PCA construct when either
response time or throughput scores functioned as inputs (Kabat et al., 2001), two PCA constructs when accuracy scores were
utilized with the second dimension representing a singlet (a single score loading on a factor; Jones et al., 2008), three PCA
constructs when accuracy scores were entered (Jones et al., 2008; Kabat et al., 2001), three PCA constructs using accuracy and
response time scores combined, with the third factor being a singlet (Bleibert et al., 2000), and five CFA dimensions when one
or more ANAM accuracy or response-time scores were paired with one or more variables from a traditional neuropsychological
measure (Short et al., 2007).

Exploratory methods dominated previous research with the ANAM. PCA/EFA was used in four out-of-the five papers. One
of the most critical decisions in a PCA/EFA is to define the correct number of factors to retain (Fabrigar, Wegener, MacCallum,
& Strahan, 1999; Preacher, Zhang, Kim, & Mels, 2013). None of the foregoing ANAM studies used state-of-the-art procedures
such as parallel analysis (PA) or minimum average partialling (MAP) to identify the correct number of factors to retain during
a PCA/EFA. No CFA used scores from the ANAM alone nor is CFA likely to identify the correct number of factors (Garrido,
Abad, & Ponsoda, 2016; Heeme, Hilbert, Draxler, Ziegler, & Bühner, 2011). Consequently, it is reasonable to conclude that
results from factorial-validity research were equivocal. One, two, three, and five dimensions were suggested to underlie the
ANAM. Thus, to date, no firm foundation has been established as an empirical base for CFA.

The current investigation was developed to address the shortcomings in prior factor analyses. We used three methods to
identify integral constructs underlying the ANAM: (a) EFA, (b) first-order CFA, and (c) hierarchical CFA. As indicated, past
research identified multiple factor models for the ANAM. Rather than rely on such diverse outcomes, the number and nature of
factors for the CFAs were based on more modern empirical results from the current EFAs—along with concordant finding from
the previous studies. Consequently, the current investigation followed methodological recommendations that “the purpose of
EFA is typically to identify the latent constructs or to generate hypotheses about their possible structures [the nature and number
of factors], whereas the purpose of CFA is to evaluate hypothesized structures of the latent constructs and/or to develop a better
understanding of such structures” (Bandalos & Finney, 2019, p. 98). That is, the EFAs were used to generate models and the
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subsequent CFAs were appropriately used to test models (Matsunaga, 2010; Norman & Streiner, 2014). Previous research, along
with recommendations by recent textbooks, also indicate that CFA is especially effective in uncovering latent factor structures
when used in conjunction with preliminary EFA findings (DeVellis, 2017; Fabrigar et al., 1999; Gerbing & Hamilton, 1996;
Selbom & Tellegen, 2019).

The scores clinicians interpret should not be based on factorial-validity evidence alone. Valid interpretation also is dependent
upon a test’s external validity, and on how well each score reliably reflects its intended construct. With respect to reliability, a
clinically meaningful score is defined as “one that is reliable enough for its prospective use and one that has information that is
not adequately contained in [just a] total test score” (Wainer & Feinberg, 2015, p. 18). Thus, dimensions uncovered during the
CFAs were further evaluated to determine which ANAM scores possess sufficient reliability for clinical score interpretation.

Materials and Methods

Participants

Study participants included 218 interscholastic female soccer players (age = 17.0±0.7 year.; mass = 55.5±6.8 kg.; height =
164.7±6.6 cm) drawn from a large (850+) prospective database examining purposeful heading from four area high schools
over a 10-year period. To be considered for inclusion, participants had to have completed at least three full playing seasons. All
participants (and their parents if necessary) signed the informed consent agreement, which was approved by the University’s
human subjects review board (HS IRB 157873–5). Each individual completed a General Health Questionnaire, which included
demographic data, concussion history, player position, and number of years playing soccer at the start of each soccer season.

We adapted the commonly recommended strategy of splitting subjects into two samples and performing EFAs on one sample
and CFAs on the other (cf . Glutting, Youngstrom, Watkins, & Frazier, 2007; Williams et al., 2003). The first sample (N = 218)
was obtained at the baseline of a large longitudinal study of interscholastic girls’ soccer players. Data from wave 1 of this sample
were used for EFA. A second set of observations from this sample (N = 217) covered the same subjects tested one year later
(with the loss of one participant who moved from the area). Data from these observations were used for CFA.

Instruments

Three instruments were utilized in this study. First, a General Health Questionnaire, which included demographic data,
concussion history, player position, and number of years playing soccer. Second, a concussion symptom checklist consisting
of 17 SRC symptoms (headache, dizziness, blurred vision, poor concentration, fatigued, neck pain, etc.). Each symptom was
scored on a spectrum from 0 (none) to 6 (worst ever experienced), and the total symptom score was tallied.

Finally, the ANAM-2001 was utilized to measure neurocognitive performance. Throughput scores measure test performance
efficiency, which combine speed and accuracy (number of correct responses per minute) of the particular cognitive domain in
question. The higher the throughput score, the more efficient the participant was during a test. Throughput scores served as the
dependent variables. The stability of the ANAM test scores was reported previously (Kaminski et al., 2009).

The seven test variables included:

• Simple Reaction Time (SRT)—a measure of SRT that measures response time (in ms) to a stimulus (∗) presented at various
time intervals.

• Continuous Performance Test (CPT)—a measure of attention and concentration where the participant must continuously
monitor letters and identify whether the current letter displayed is the same or different from the immediately preceding
letter.

• Math Processing (MPH)—a measure of mental processing speed and mental efficiency where the participant must solve a
three-step simple addition or subtraction equation and identify whether the solution is greater or less than 5.

• Match-to-Sample (MTS)—a measure of visual memory whereby the participant must recall a checkerboard matrix after 5 s
and match it to the original matrix design.

• Sternberg Memory (ST6)—a measure of working memory where the participant must memorize a string of six letters and
subsequently recall whether or not a presented letter belongs to that six-letter string.

• SRT2—a repeat of the SRT test.
• CPT2–a repeat of the CPT test.

The software uses a pseudo-randomization procedure to minimize practice effects on repeat testing of SRT2 and CPT2.
Therefore, a question arises—Does the ANAM offer users five, or seven, distinct scores? How one answers this question has a
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direct effect on the number of variables to include in a factor analysis of the ANAM. To be thorough, we factored both five-score
and seven-score batteries. Results are presented here for the seven-score battery.

Procedure

All instruments were administered at the beginning and conclusion of each soccer season in a quiet classroom setting, free
from distractions. Testing was completed at the end of the school day prior to any soccer activities. The ANAM-2001 protocol
was administered on a laptop computer with participants using the handheld mouse to navigate the on-screen prompts. Testing
required approximately 30 min to complete and was coordinated through the efforts of the schools’ athletic trainer or coach.
None of the participants reported any adverse effects from the baseline testing session.

Data Analyses

EFA. Analyses began with a series of EFAs because performing a CFA on the same sample as an EFA results in over-
fitted models (Flora & Flake, 2017; Osborne & Fitzpatrick, 2012). Indeed, Fokkema and Greiff (2017) randomly generated
25 uncorrelated item scores using 300 observations. They conducted EFA and then CFA on the same random data. The CFA
produced deceivingly optimistic model fit indices and parameter estimates. Based on these results, Fokkema and Greiff (2017)
strongly recommended against using EFA and CFA with the same sample.

Empirical work has shown that CFA may be a less desirable technique for determining the number of latent dimensions
measured by an instrument (Garrido et al., 2016; Heeme et al., 2011). For instance, MacCallum and colleagues found that
specification searches in covariance structure modeling often did not uncover the correct population model (MacCallum, 1986;
MacCallum, Roznowski, & Nowrwitz, 1992). Likewise, Gorsuch (2003) reported that whereas EFA results nearly always
replicate during first-order CFAs; the reverse is not true when CFA is employed to uncover first-order factors and then
used to replicate results with a second sample. Therefore, EFAs were employed first because of the uncertainty surrounding
the underlying structure of the ANAM (Browne, 2001) and the potential for stronger structural evidence to emerge during
second-stage CFAs (Goldberg & Velicer, 2006).

EFAs were conducted with SPSS version 27 (IBM, 2020). Principal axis extraction was applied due to its relative tolerance
of multivariate nonnormality and its superior recovery of weak factors (Briggs & MacCallum, 2003). Communalities were
initially estimated by squared multiple correlations and were iterated to produce final communalities (Gorsuch, 1983). For
both theoretical and empirical reasons, it was assumed retained factors would be correlated (Gorsuch, 1983; Meehl, 1990).
Consequently, promax rotations were employed.

Defining the number of factors. As mentioned in the introduction, one of the most critical decisions in a PCA/EFA is to
determine the correct number of factors to retain (Fabrigar et al., 1999; Preacher et al., 2013). Kaiser’s criterion (eigenvalues ≥
1.0) is the most popular method (Fabrigar et al., 1999; Ruscio & Roche, 2012), and it is the default in most statistical packages
(Henson & Roberts, 2006). One of the prior ANAM analyses used this procedure (Bleibert et al., 2000). Two ANAM studies
used both eigenvalues ≥ 1.0 and scree plots (Kabat et al., 2001; Naifeh et al., 2016). The last publication was not explicit about
its method(s) for keeping factors (Jones et al., 2008).

Unfortunately, Kaiser’s rule performed poorly in Monte Carlo simulations. It tended to under- or overestimate the number
of true constructs (Velicer, Eaton, & Fava, 2000; Zwick & Velicer, 1986). Similarly, scree plots were criticized as being too
subjective (Crawford & Koopman, 1979; Streiner, 1998). Attempts were made to interpret scree plots more objectively via
empirical methods (see Watkins, in press, for a review). Even so, results from simulations were inconsistent and it is not clear if
any of the empirical scree methods was superior (Nasser, Benson, & Wisenbaker, 2002; Raiche, Walls, Magis, Riopel, & Blais,
2013).

As also presented in the introduction, none of the foregoing ANAM studies used state-of-the-art procedures such as parallel
analysis (PA) or minimum average partialling (MAP). Findings from several Monte Carlo simulations demonstrated PA and
MAP were the two best methods for determining the correct number of factors and that scree was a useful adjunct (Garrido,
Abad, & Ponsoda, 2011; Ruscio & Roche, 2012; Timmerman & Lorenzo-Seva, 2011; Zwick & Velicer, 1986). Model-fit criteria
(χ 2, the root mean square error of approximation [RMSEA], etc.) were shown to be less accurate than either PA or MAP and,
they were more likely to over-factor (select too many factors; MacCallum et al., 1992; Schmitt, 2011).

Each EFA model was assessed against the following five rules: (a) eigenvalues ≥ 1.0 (Kaiser, 1974a), (b) scree (Cattell, 1966),
(c) mean eigenvalues from a PA (Horn, 1965), (d) Glorfeld’s (1995) 95th percentile extension of PA, and (e) interpretability
(Fabrigar et al., 1999; Gorsuch, 1983, 2003). In addition, two measures of model fit were examined (f) the chi-square (χ 2) test,
and (g) the RMSEA (Steiger, 1990).
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Factor loadings (i.e., pattern coefficients) ≥.40 were considered salient because that would explain at least 16% of a
variable’s variance. The overall goal was to achieve interpretable and theoretically meaningful factors that optimally balanced
comprehensiveness (accounting for the most variance) and parsimony (with the fewest factors) in an approximate simple
structure pattern (Fabrigar et al., 1999; Gorsuch, 1983, 2003).

CFA. Mplus version 8.3 (Muthén and Muthén (1998-2018) was used for the CFAs. As presented in the Results section, certain
variables were kurtotic. Therefore, the robust Huber/Pseudo ML/sandwich correction (Mplus: estimator = MLR) was applied
because of its ability to uncover underlying factors when data are not normally distributed.

Numerous fit indices are available for estimating the quality of measurement models. Most were developed under somewhat
different theoretical frameworks and/or focus on different aspects of fit (cf . Browne & Cudeck, 1993; Hu & Bentler, 1995). For
this reason, it is generally recommended that multiple measures be employed (Tanaka, 1993). The Tucker-Lewis index (TLI;
Tucker & Lewis, 1973), the comparative fit index (CFI; Bentler, 1990), the RMSEA (Browne & Cudeck, 1993), the standardized
root mean square residual (SRMR; Chen, 2007), and the parsimonious normed fit index (PNFI; Mulaik et al., 1989) were reported
for each model. The first two measures generally range between .00 and 1.0, with larger values reflecting better fit. Historically,
values of .90 or greater have been taken as evidence of good-fitting models (Bentler & Bonett, 1980). However, more recent
research suggests this threshold should be closer to .95 for the CFI and TLI (Hu & Bentler, 1995; Marsh, Hau, & Grayson,
2005). Alternatively, smaller RMSEA and SRMR values support better fitting models, with values of .05 or less indicating good
fit (Browne & Cudeck, 1993). The PNFI ranges between .00 and 1.00, with higher values indicating a more parsimonious fit.
Unlike the other measures of fit, there is no standard regarding how high the PNFI should be. It is used to compare competing
models (Trost et al., 2003).

Likewise, three information criteria were calculated for the CFAs: (a) the Akaike Information Criteria (AIC; Akaike, 1987),
(b) the Bayesian Information Criteria (BIC; Schwartz, 1978), and (c) the sample-size adjusted BIC (SS-BIC; Sclove, 1987).
Model selection is relative for the information criteria. The analysis with the lowest AIC, BIC, and/or SS-BIC value is the best
model.

Factor invariance. Factorial invariance has emerged as an important consideration in structural equation modeling across
groups and/or occasions (Meredith, 1964; Morin, Arens, & Marsh, 2016; Vandenberg & Lance, 2000). Therefore, invariance
was examined across the two timepoints the ANAM was administered.

Reliability. Cronbach’s (1951) alpha is the most widely used measure of internal-consistency reliability (Trizano-Hermosilla
& Alvarado, 2016). Across the last decade or so, shortcomings of the alpha coefficient have been widely discussed (Cho & Kim,
2015; Revelle & Zinbarg, 2009; Sijtsma, 2009, 2011; Sijtsma & van der Ark, 2015). Measurement experts now recommend
omega coefficients when gauging the internal consistency of factor-based models (Chen, Hayes, Carver, Laurenceau, & Zhang,
2012; Gignac & Watkins, 2013; Schweizer, 2011; Watkins, 2017). This is especially important for multidimensional instruments,
which require an understanding of an overall test-score (composite) reliability, as well as reliability for each of the lower (first-
order factor) scores underlying the composite (Canivez, 2016; Canivez, Watkins, & Dombrowski, 2017; Watkins, 2017).

The reliability of factors and factor scores can be estimated with both omega coefficients (McDonald, 1999; Rodriguez, Reise,
& Haviland, 2016a, 2016b; Watkins, 2017) and the H index (Hancock & Mueller, 2001). More specifically, McDonald (1999)
developed a family of omega coefficients useful for identifying reliabilities from a factor analysis (either EFA or CFA). We
employed three omega coefficients. First, omega total (ωT) produces reliability estimates similar to coefficient alpha when a test
is unidimensional, or when a test is composed of only first-order factors (Brunner, Nagy, & Wilhelm, 2012; Maydeu-Olivares,
Coffman, & Hartmann, 2007; Raykov, 1997). Second, omega hierarchical (ωH) was used to estimate the reliability of a unit-
weighted total score (i.e., the higher-order composite) after removing the influence of the group factors. Third, omega scale (ωS)
examined the reliability of a unit-weighted first-order (group) scores after removing the influence of all other factors.

A high ωH coefficient indicates the general factor is the dominant source of variance in a test. Conversely, a low ωH
coefficient indicates group factors and/or uniqueness account for the majority of reliable variance (Watkins, 2017). It has been
suggested ωH values should be greater than .50, and preferred values greater than .75; but these cutoff values have not been
thoroughly investigated (Reise, 2012; Reise, Bonifay, & Haviland, 2013). ωT estimates were obtained using Mplus. The ωH
and ωS coefficients were produced using the Omega program developed by Watkins (2013, 2017). Omega ωH can also be seen
as a validity measure because it addresses the proportion of variance contributed by latent constructs (Brunner et al., 2012;
Gustafsson & Åberg-Bengtsson, 2010).

The reliability of factors was also examined using the H index. H is the correlation between a factor and an optimally weighted
factor score, and it is considered a measure of construct reliability or replicability that quantifies how well a latent variable is
represented by a set of indicators (Hancock & Mueller, 2001). According to Mueller and Hancock (2019), H is “an estimate
of the correlation that a factor is expected to have with itself over repeated administrations” (p. 455). H values lower than .80
suggest that the factor is not well defined and will not replicate across studies nor provide accurate path coefficients if included
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Table 1. Distributional statistics for ANAM at first and second testing

First testinga Second testingb

M SD Skew Kurtosis M SD Skew Kurtosis

Variable
SRT—First administration 213.33 31.46 −0.65 1.93 219.91 29.56 −0.08 0.30
MPH 17.75 5.69 0.69 2.16 21.81 8.11 2.60 14.0
CPT—First administration 93.85 17.68 −0.61 2.27 111.00 16.00 0.14 0.49
Match to sample 35.65 11.22 0.73 0.63 39.94 12.78 0.62 0.12
ST6 75.58 16.31 −0.17 1.56 86.64 15.61 0.33 0.26
SRT—Second administration 212.64 32.74 −0.64 1.72 215.61 34.16 0.01 0.97
CPT—Second administration 101.63 17.62 −0.84 4.09 115.28 18.05 0.15 0.01

Note: All values rounded to second decimal position for convenient presentation.
aN = 218
bN = 217

in statistical models (Ferrando & Lorenzo-Seva, 2019; Mueller & Hancock, 2019; Rodriguez et al., 2016b). A tutorial on the
use of omega and H coefficients is provided by Watkins and Canivez (2020).

Results

Table 1 provides means distributional statistics (Ms, SDs, skew, kurtosis) for the seven ANAM variables across the first
and second assessments. Several variables were kurtotic and required uses of the PAF method during the EFAs and the MLR
estimator during the CFAs. In addition, reaction time and/or CPT values for four subjects were considerably larger than for the
other 213 participants. Mahalanobis distances showed each of the four subjects was a multivariate outlier (Tabachnick & Fidell,
2019). We repeated all analyses excluding the four cases. All substantive conclusions were identical. Results are reported for
the full sample.

EFA

The Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy (Kaiser, 1974) was acceptable (.81). Bartlett’s test of
sphericity (1950) statistically rejected the hypothesis that the correlation matrix was an identity matrix (χ 2 of 587.098 with
21 degrees of freedom at p < .001). Altogether, these measures indicate that factor analysis is appropriate.

One through seven factors (i.e., one factor for each ANAM score that practitioners routinely interpret) were evaluated and
compared to criteria for determining the number of factors to retain. None of the three- through seven-factor models satisfied
even a single criterion for factor retention. PA (using both 50th and 95th percentile eigenvalues) and MAP pointed to retaining
one factor. Alternatively, the scree plot suggested a two-factor solution. Consequently, both one- and two-factor solutions were
examined.

Table 2 presents loadings for models with one and two factors. For Model 1, all seven ANAM tests showed salient
loadings and this factor accounted for 40.4% of the before-rotation variance. This single, generalized dimension was named
“Neurocognition.” Around 42% of the residuals were > .05 and 38% were > .10, suggesting that another factor might be
extracted (Flora, 2018). Given a one-factor structure, McDonald’s (1999) ωT was used to estimate internal consistency. The ωT
coefficient (ωT = .76) indicated the one-factor battery possessed acceptable internal-consistency reliability.

Simple structure was also evident for Model 2. The first, and largest factor, was defined by salient loadings from the CPT (first
and second administrations), ST6, MTS, and MPH and accounted for 41.5% of the total variance before rotation. Consequently,
the factor was labeled “Mental Efficiency.” The second factor was characterized by salient loadings from the SRT (first and
second administrations) and accounted for 10.4% of the variance before rotation. Therefore, it was named “SRT.” These two
factors accounted for 51.9% of the total variance, which is near the median found during a meta-analysis of 803 EFAs (Peterson,
2000). The interfactor correlation was .60 was not high enough to pose a threat to discriminant validity. Reliability for the
two-factor model is presented in the CFA section.

CFA

Given the lack of a clear-cut EFA solution, both one- and two-factor structures were submitted to a CFA. The CFAs used
data from the second testing. Fit statistics are reported for all tested models (Table 3). The hierarchical CFA model with two
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Table 2. Loadings from the one-factor and two-factor EFAs of the ANAM

Variable Model 1a Model 2b

Factor I Factor I Factor II

SRT—First admin .50 −.11 .82
MPH .40 .52 −.12
CPT—First admin .87 .76 .15
Match to sample .41 .56 −.16
ST6 .69 .76 −.04
SRT—Second admin .53 −.08 .83
CPT—Second admin .88 .73 .18
Eigenvalue 2.83 2.91 0.73
% Variance 40.4 41.5 10.4

Note. All values rounded to second decimal position for convenient presentation.
Salient coefficients (i.e., ≥.40) in bold.
aN = 218.
bN = 217.

Table 3. The goodness-of-fit statistics using robust least squares estimators for CFA models

Fit statistic Model

CFA 1-factor first-order modela,b CFA 2-factor first-order model CFAb hierarchical model with two first-order factors

χ 2 49.498 7.281 7.281
df 14 13 13
p 0.0001 0.8871 0.8871
RMSEA 0.108 0.000 0.000
SRMR 0.059 0.020 0.020
CFI 0.920 1.000 1.000
TLI 0.880 1.000 1.000
AIC 12512.158 12459.547 12459.547
BIC 12583.232 12534.006 12534.006
SS-BIC 12516.685 12464.290 12464.290
PNFI .894 .984 .984

Notes. CFA = confirmatory factor analysis; df = degrees of freedom; RMSEA = root mean square error of approximation; SRMR = standardized root mean
square error of approximation; CFI = comparative fit index; TLI = Tucker-Lewis Index; AIC = Akaike information criterion; CAIC = constant AIC; BIC =
Bayesian information criterion; SS-BIC = sample-size-adjusted BIC. PNFI = Parsimonious Normed Fit Index.
N = 217.
aEFA Promax rotation, factor correlation, r = .60.
bCorrelation among first-order factors = .66.

first-order factors and the CFA model with two first-order factors showed superior fit statistics. Fit statistics were identical for
these two models because the second-order factor is just identified. A first-order CFA with two (or three) correlated factors is
mathematically equivalent to a hierarchical CFA including the same two (or three) factors and results in the same fit statistics
and degrees of freedom (Hershberger & Marcoulides, 2013; Morin et al., 2016).

There are two compelling reasons for favoring the hierarchical model. First, a substantial association was found between the
two first-order factors (r = .60 between the promax EFA rotated factors, and r = .66 among the two first-order CFA factors).
These findings supported the presence of a higher order organization. Second, reliabilities (presented below) were much better
for the hierarchical composite than that for the two first-order factors.

Figure 1 provides a visual representation of the accepted, hierarchical CFA model. With the exception of the MPH test
(highest loading = .28), the other six tests showed appreciable loadings on both their hypothesized lower order factor, as well
as the single higher order dimension (appreciable loadings ≥ .45). The first lower order factor was named Mental Efficiency,
and it was organized according to scores from four tests: CPT (first and second administrations), ST6, and MTS. The second
lower order factor was labeled SRT factor, and it was characterized by salient loadings from the SRT test (first and second
administrations).
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Fig. 1. Hierarchical CFA model.

Factor Invariance

Under most circumstances, factor invariance requires that an established factor structure be in place to establish the level
of invariance (e.g., configural, scalar, metric) across groups and/or times (Meredith, 1964; Vandenberg & Lance, 2000). In
the current case, where the factorial structure has not yet been established, we sought to compare pertinent elements of the
covariance matrix between the first occasion and the second occasion in our data. Because our approach is factor analytic (in
contrast to principal component analysis), modeling of covariances is the central consideration. Using procedures recommended
in Jöreskog & Sörbom (1996), beginning with a freely estimated covariance matrix (i.e., the saturated model), we constrained
the corresponding elements of the ANAM to be equal across occasions, resulting in a 28 degree of freedom test (χ 2 (28) = 71.8,
p < .0001, CFI = .97, TLI = .89, RMSEA = .088). In order to allow for the possibility that subscale variances could vary across
occasions, we eliminated cross-occasion constraints on subscale variances, resulting in a 21 degree of freedom test (χ 2 (21) =
15.5, p = .796, CFI = 1.00, TLI = 1.00, RMSEA = .001). Follow-up analyses on these results suggested that the variance of
the MPH subscale was greater at the second occasion that of the first, but that there were no other differences in the covariance
matrices on the first and second occasions, suggesting that whatever underlying structure applies to the data, it can be considered
comparable across timepoints. We used this information in order to construct our approach to assessment of the factor structure
of the ANAM using data from the first occasion to determine a structure and data from the second occasion to cross-validate it.

Reliability

Table 4 presents internal-consistency estimates. The ωT) column supplies internal-consistencies for the two factors from the
first-order CFA. Reliability was acceptable for the first factor (ωT = .83), but the second factor showed insufficient internal
consistency for score interpretation (ωT = .54).
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Table 4. Omega and H coefficients for the hierarchical

Score Omega ωT for two
first-order factors

Omega
ωh

Omega ωS H

Hierarchical score (overall composite) .85 .73 .86
Factor 1 (SRT) .83 .20 .41
Factor 2 (mental efficiency) .54 .03 .01

Notes: Omega ωT = Omega total, Omega ωh = omega hierarchical; Omega ωS = omega scale, H = H index.

Omega hierarchical (ωH) and omega scale (ωS) were estimated for the hierarchical CFA.
The omega coefficient was high for the overall composite (.85), and it was sufficient for confident score interpretation. By

contrast, omegas were much lower for the two lower level factors. Values ranged from a high of .20 for the “SRT” factor to a
low of .03 for the “Mental Efficiency” factor. Both internal-consistency coefficients were below the recommended minimum of
.50.

Equally important, the H index demonstrated that both of the two first-order ANAM factors were not well defined and
were unlikely to replicate in future studies (i.e., H < .80). The general factor was well defined and should replicate (H =
.86). Therefore, results across both sets of factor analyses (EFAs, CFAs), and the reliability examinations, were consistent in
supporting interpretation of the overall composite score from the ANAM.

Discussion

The ANAM offers practitioners numerous test scores and a composite to interpret. But valid interpretation is dependent on
whether these scores provide unique information independent of other constructs and on how reliably each score reflects its
intended dimension (Brunner et al., 2012; Canivez & Youngstrom, 2019; Chen et al., 2012; Ferrando & Lorenzo-Seva, 2019;
Ferrando & Navarro-González, 2018; Reise et al., 2013, 2018; Rodriguez et al., 2016a, 2016b; Wainer & Feinberg, 2015). This
study evaluated the internal structure (factorial validity) of the ANAM using a sample of high-school, female soccer players.
Findings failed to uphold suppositions that the ANAM measures seven distinct constructs. Thereby, results make clear clinicians
cannot validly interpret any of the ANAM’s seven test scores independently.

Instead, neuropsychological phenomena measured by the ANAM-2001 were best reproduced by a hierarchical CFA
organization composed of only three scores: a general composite and two lower level factors (SRT , Mental Efficiency). The
lower level SRT factor was characterized by salient loadings from the SRT test (first and second administrations). The lower-
level Mental Efficiency factor was organized according to scores from four tests: CPT (first and second administrations), ST6,
and MTS. The MPH test consistently failed to make a meaningful contribution to either lower-level factor or the composite.
Therefore, MPH may be measuring something apart from the other six tests in the ANAM.

Reliability is another essential component of assessment. It sets the upper limits of a test’s validity, and it establishes
confidence limits for interpreting test scores (Glutting, McDermott, & Stanley, 1987). Consequently, adequate reliability is
a minimum requirement for clinical score interpretation. The reason is because low scores from each of the ANAM’s seven test
are often taken to be indicators of neuropsychological weaknesses and/or the possibility of a concussion (Wahlquist, Glutting,
& Kaminski, 2019).

Reliability was a major drawback for the accepted, hierarchical CFA model. Internal-consistency reliability was appreciable
for the composite (ωH = .85, H = .86), but it was deficient for the two lower-level factors (ωS = .20, H = .41 for SRT &
ωS =. 03 & H = .01 for Mental Efficiency). Neither first-order factor possessed sufficient reliability to support clinical score
interpretation. Results, therefore, reveal that practitioners should not interpret either of the two first-order factor scores or, any
the seven test scores from the ANAM individually. Instead, clinicians should simplify interpretations to the one composite score.

The current study is notable in several respects. Its sample (N = 218 first testing, N = 217 on retesting) is the second largest
among factor analyses of the ANAM. One study was superior. It included 9,883 soldiers (Naifeh et al., 2016). Comrey and Lee
(1992) posited that a sample of 100 subjects is poor for a factor analysis, 200 is fair, 300 is good, 500 is very good, and 1,000 or
more is excellent. By their standards, the current sample size is fair, the Naifeh et al. (2016) investigation is excellent, and the
other four studies are somewhere between poor and fair.

In contrast to the global advice of Comrey and Lee (1992), more recent sample-size guidelines are based on quality. The
recommendations are derived from Monte Carlo simulations that included variables such as sample size, the number of variables,
magnitude of the factor loadings, and amount of factor overdetermination (number of variables per factor; Guadagnoli & Velicer,
1988; Hogarty, Hines, Kromrey, Ferron, & Mumford, 2005; MacCallum, Widaman, Zhang, & Hong, 1999; Mundfrom, Shaw,
& Ke, 2005; Velicer & Fava, 1998; Wolf, Harrington, Clark, & Miller, 2013). Watkins (in press) summarized the findings and
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offered useful look-up tables. The current investigation included a minimum of 217 subjects. We had seven tests and coefficients
≥ .40 were considered appreciable. Accordingly, simulation guidelines revealed we needed a sample of 140 subjects.

The current study also is noteworthy with regard to the breadth of its variables. We evaluated a seven-test battery. Only one
other investigation encompassed seven tests (Kabat et al., 2001). No prior study comprised more variables. To date, only 12 of
the ANAM’s 30 tests were submitted to factor analysis. The tests include the seven here, as well as: Code Substitution, Code
Substitution Delayed, Spatial Processing, Logical Memory, and Delayed Memory.

Limitations

Our sample was the primary limitation. The size of our two, repeated samples was sufficient to conduct exploratory and
confirmatory analyses. It also is unique among the youth soccer population who have reason to be tested using computerized
neuropsychological test batteries based on the fact that they are involved in a sporting activity with a high incidence of sports
related concussion, as well as the propensity to encounter RHI from heading a soccer ball. However, we must note that our
sample was restricted to female soccer players at the high school level in one specific region of the Northeast United States and
may not reflect the entire population of interscholastic soccer players across the country.

A second limitation is that analyses were conducted using an older version of the ANAM—as were at least three of the other
factor analyses (One used a newer version of the test and it was difficult to ascertain which version was used in another.) A third
drawback was our use of throughputs. As mentioned in the introduction, the ANAM offers three scores: speed, accuracy, and
throughput (accuracy/speed).

Implications

Outcomes support inferences that scores from the ANAM should be parsimoniously interpreted as measuring a single
dimension—one, umbrella construct. Luckily, newer versions of the ANAM offer a composite score. As found here, examining
scores from the seven individual ANAM tests, or its first-order factors, is very risky and unlikely to be clinically relevant.

Future Directions

We recommend that our factor analyses be replicated and extended to a wider variety of subjects, age levels, ANAM tests,
and score types. Equally, if not more important, studies need to build upon current findings and use them as a guide on how to
examine the ANAM’s external validity. Future criterion-related outcomes need to investigate two types of evidence: incremental
validity and diagnostic validity.

Incremental validity is the “extent to which a measure adds to the prediction of a criterion beyond what can be predicted
with other data” (Hunsley, 2003, p. 443). This type of validity is rooted in the scientific law of parsimony, which states: “what
can be explained by fewer principles is needlessly explained by more” (Jones, 1952, p. 620). There is a loss of parsimony
when clinicians switch from interpreting the ANAM’s composite to its seven individual test scores. Accordingly, there should
be compelling external validity supporting assumptions that these seven discrete scores provide criterion-related validity not
already available in the factorially supported composite score—information that is pertinent to the increased risk for concussion
as well as exposures to repetitive head impacts from heading a soccer ball.

Statistically significant group differences have been the traditional benchmark for determining whether a test has discriminant
and/or criterion-related validity (cf . Glutting, Youngstrom, Ward, Ward, & Hale, 1997; Watkins, 2009). However, as noted by
Elwood (1993), “significance alone does not reflect the size of the group differences nor does it imply the test can discriminate
subjects with sufficient accuracy for clinical use” (p. 409, original italics). Diagnostic validity statistics such as sensitivity,
specificity, and receiver operator curve statistics directly examine the individual aspects of clinical decision-making (Streiner,
2018; Watkins, 2009). Here too, future studies must demonstrate that individual test scores from the ANAM offer significantly
greater diagnostic validity than that offered by the ANAM’s parsimonious, and factorially valid, composite score.
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