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ABSTRACT
Objective: To demonstrate that Coefficient omega, a model-based 
estimate, is more a more appropriate index of reliability than coefficient 
alpha for the multidimensional scales that are commonly employed 
by neuropsychologists. Method: As an illustration, a structural model 
of an overarching general factor and four first-order factors for the 
WAIS-IV based on the standardization sample of 2200 participants 
was identified and omega coefficients were subsequently computed 
for WAIS-IV composite scores. Results: Alpha coefficients were ≥ .90 
and omega coefficients ranged from .75 to .88 for WAIS-IV factor index 
scores, indicating that the blend of general and group factor variance 
in each index score created a reliable multidimensional composite. 
However, the amalgam of variance from general and group factors did 
not allow the precision of Full Scale IQ (FSIQ) and factor index scores 
to be disentangled. In contrast, omega hierarchical coefficients were 
low for all four factor index scores (.10–.41), indicating that most of 
the reliable variance of each factor index score was due to the general 
intelligence factor. In contrast, the omega hierarchical coefficient for 
the FSIQ score was .84. Conclusions: Meaningful interpretation of 
WAIS-IV factor index scores as unambiguous indicators of group 
factors is imprecise, thereby fostering unreliable identification of 
neurocognitive strengths and weaknesses, whereas the WAIS-IV FSIQ 
score can be interpreted as a reliable measure of general intelligence. 
It was concluded that neuropsychologists should base their clinical 
decisions on reliable scores as indexed by coefficient omega.

The competent practice of psychology entails adherence to professional standards, including 
ethical standards articulated in codes of conduct (e.g. American Psychological Association, 
2002) and testing standards enumerated in the Standards for Educational and Psychological 
Testing (AERA, APA, and NCME, 2014). Among these testing Standards, ‘appropriate evidence 
of reliability/precision’ (p. 42) is vital because score validity depends on score reliability (Furr 
& Bacharach, 2014).

Reliability of measurement is an especially important foundation of neuropsychological 
practice because neuropsychologists often consider low test scores to be indicators of neu-
ropsychological weaknesses (Decker, Hale, & Flanagan, 2013; Heyanka, Holster, & Golden, 
2013). To ensure that any identified low test score is genuine and not the result of 

© 2017 Informa UK Limited, trading as Taylor & Francis Group

KEYWORDS
Intelligence; reliability; 
omega; alpha; WAIS-IV

ARTICLE HISTORY
Received 12 December 2016 
Accepted 1 April 2017

CONTACT  Marley W. Watkins    Marley_Watkins@baylor.edu

111) Check for updates I 

http://orcid.org/0000-0001-6352-7174
mailto: Marley_Watkins@baylor.edu
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/13854046.2017.1317364&domain=pdf


1114   ﻿ M. W. WATKINS

measurement error, its standard error of measurement is consulted (Brooks, Strauss, Sherman, 
Iverson, & Slick, 2009; Crawford, Garthwaite, Longman, & Batty, 2012). Of course, the standard 
error of measurement for an individual examinee is statistically based on a reliability estimate 
for that test score (Furr & Bacharach, 2014).

Conceptually, score reliability can be considered within the classical test theory paradigm 
where the observed test score is hypothesized to be composed of two latent independent 
components: the true score plus measurement error. Error is presumed to be random but 
the true score is, theoretically, the mean score that would be attained if a person took the 
test an infinite number of times. Reliability is the ratio of true score variance to error variance 
(i.e. its consistency or precision).

Given that the true score is not observable, various ways to objectify it have been devel-
oped (Furr & Bacharach, 2014). Currently, the most popular quantification of score reliability 
is coefficient alpha (Streiner, 2003), sometimes called Cronbach’s alpha (Cronbach, 1951). 
Alpha’s popularity may be attributed to its ease of computation, reliance on a single test 
administration, and straightforward interpretation as percent of true score variance. However, 
the accuracy of coefficient alpha, like all statistical models, depends on several assumptions 
(Allen & Yen, 1979). Those assumptions include: (a) item errors are uncorrelated; (b) the scale 
measures a single construct (i.e. unidimensionality); (c) all items have the same true score 
variances; and (d) all items have the same relationship to the measured construct (i.e. equal 
factor loadings). A more technical description of parallel, tau-equivalent, and congeneric 
assumptions are available in measurement texts (Allen & Yen, 1979; Furr & Bacharach, 2014; 
Meyer, 2010).

If its basic assumptions are violated, alpha may either over or under estimate the popu-
lation reliability (Cortina, 1993; Green & Hershberger, 2000; Green, Lissitz, & Mulaik, 1977; 
Novick & Lewis, 1967; Raykov, 2001a). Unfortunately, model assumptions are often ignored 
or unknown by test users (Graham, 2006; Greenland et al., 2016), including users of coefficient 
alpha (Henson, 2001). Further, these assumptions are unrealistic for psychological test data 
and likely to be violated in practice (Cho & Kim, 2015). After considering the limitations of 
alpha, Cronbach and Shavelson (2004, p. 403) concluded that ‘I no longer regard the alpha 
formula as the most appropriate way to examine most data’ and advocated a component 
of variance approach (i.e. generalizability theory).

More recently, measurement specialists have reiterated the limitations of coefficient alpha, 
demonstrated that its assumptions are likely violated in practice, and provided alternatives 
that are not dependent on such unrealistic assumptions (Green & Yang, 2009; McDonald, 
1999; Raykov, 1997, 2001b; Sijtsma, 2009; Simsek & Noyan, 2013; Zinbarg, Revelle, Yovel, & 
Li, 2005; Zinbarg, Yovel, Revelle, & McDonald, 2006). These papers have tended to be quite 
technical but consistent in concluding that alpha is ‘an inappropriate measure of internal 
consistency reliability’ (Dunn, Baguley, & Brunsden, 2014, p. 402).

Model-based reliability estimates are attractive alternatives to alpha that make fewer and 
more realistic assumptions (Dunn et al., 2014; Reise, 2012). Critically, model-based estimates 
are able to properly estimate reliability for multidimensional tests where item scales and 
factor loadings differ (Green & Yang, 2009; Hancock & Mueller, 2001). The omega (ω) family 
of coefficients, first described by McDonald (1999), are the principal model-based reliability 
coefficients reported in current research (e.g. Canivez, Watkins, & Dombrowski, 2016). In fact, 
coefficient alpha is a special case of omega when alpha’s assumptions are satisfied (McDonald, 
1999). Especially for multidimensional constructs, omega “provides a better estimate for the 
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composite score [than alpha] and thus should be used (Chen, Hayes, Carver, Laurenceau, & 
Zhang, 2012, p. 228). Likewise, Dunn et al. (2014) advised that psychologists ‘change to the 
routine reporting of omega in place of alpha’ (p. 409) and Schweizer (2011) suggested that 
greater use of omega ‘would be highly desirable’ (p. 144).

Coefficient omega is based on a decomposition of the variance of a test within a factor 
analytic model into four parts: (a) a general factor with variance common to all measured 
variables; (b) a set of group factors (i.e. variance common to some but not all of the measured 
variables); (c) specific factors with variance unique to each measured variable; and (d) random 
error (Revelle, 2016). Specific factor variance cannot be disentangled from random error in 
a single test administration so they are combined (called uniqueness) in the computation 
of omega. Thus, omega replaces the true score theory hypothesis of true and error variance 
with the factor analytic conceptualization of common and unique variance.1

Several omega variants can be computed to describe how precisely ‘total and subscale 
scores reflect their intended constructs’ and determine ‘whether subscale scores provide 
unique information above and beyond the total score’ (Rodriguez et al., 2016a, p. 223). The 
most general omega coefficient is omega total (ω), ‘an estimate of the proportion of variance 
in the unit-weighted total score attributable to all sources of common variance’ (Rodriguez 
et al., 2016a, p. 224). High ω values indicate a highly reliable multidimensional composite. 
However, the amalgam of general and group variance in the computation of ω does not 
allow the precision of total and subscale scores to be disentangled.

ω can also be computed for each subscale score using the same computational logic. 
That is, the proportion of each subscale score’s total variance attributed to the blend of 
general and group factor variance. Called omega subscale (ωs), high values indicate a highly 
reliable multidimensional composite but fail to distinguish between precision of the general 
factor vs. precision of the group factor. Thus, omega as applied to a total score (ω) and as 
applied to a subscale score (ωs) reflect the systematic variance attributable to multiple com-
mon factors. Similar to coefficient alpha, both ω and ωs index the reliability of a multidimen-
sional composite score.

Another omega variant, called omega hierarchical, reflects variance attributable to a com-
mon factor and is therefore a measure of the precision with which a score assesses a single 
construct. When applied to the general factor, ωh is the ratio of the variance of the general 
factor compared to the total test variance and ‘reflects the percentage of systematic variance 
in unit-weighted total scores that can be attributed to the individual differences on the 
general factor’ (Rodriguez et al., 2016a, p. 224). A high ωh coefficient indicates that the general 
factor is the dominant source of systematic variance in the test score. Conversely, a low ωh 
coefficient indicates that group factors and/or uniqueness account for the majority of reliable 
variance in the test score.

When applied to group factors, the omega hierarchical variant (ωhs) indicates the propor-
tion of variance in the subscale score that is accounted for by its intended group factor (e.g. 
verbal comprehension factor in the VCI score, working memory factor in the WMI score, etc.) 
to the total variance of that subscale score and indexes the reliable variance associated with 
that subscale after controlling for the effects of the general factor. If ωhs is low relative to ωs, 
most of the reliable variance of that subscale is due to the general factor, which precludes 
meaningful interpretation of that subscale score as an unambiguous indicator of a group 
factor (Rodriguez et al., 2016b). In contrast, a robust ωhs coefficient suggests that most of 
the reliable variance of that subscale is independent of the general factor and clinical 



1116   ﻿ M. W. WATKINS

interpretation of an examinee’s strengths and weaknesses beyond the general factor can 
be conducted (Brunner et al., 2012; DeMars, 2013; Reise, 2012).

The relatively recent development of omega has not yet been reflected in the technical 
manuals of most psychological tests (Black, Yang, Beitra, & McCaffrey, 2015), nor have omega 
coefficients been reported for the cognitive tests that are frequently employed by neuropsy-
chologists (Mihura, Roy, & Graceffo, 2017). For example, neuropsychologists frequently inter-
pret score profiles from the Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV; 
Wechsler, 2008a) to identify neurocognitive strengths and weaknesses (Crawford et al., 2012; 
Donders & Strong, 2015; Glass, Ryan, & Charter, 2010; Puente & Puente, 2013; Rabin, Paolillo, 
& Barr, 2016; Silver et al., 2008). Coefficient alpha reliability estimates are available for the 
WAIS-IV (Wechsler, 2008b) and are generally quite high (Groth-Marnat, 2009). Given these 
strong reliability coefficients, clinicians have been encouraged to interpret WAIS-IV score 
patterns, especially those at the factor index level (Groth-Marnat, 2009; Lichtenberger & 
Kaufman, 2009; Sattler & Ryan, 2009), and neuropsychologists routinely do so (Howieson & 
Lezak, 2012; Larrabee, 2014).

Establishing sufficient reliability is necessary for all educational and psychological testing 
applications (AERA, APA, and NCME, 2014) and especially important for evaluating the clinical 
utility of neuropsychological testing (Frazier, Youngstrom, Chelune, Naugle, & Lineweaver, 
2004). Given that the WAIS-IV is hierarchically structured and thus multidimensional (Carroll, 
1993), the statistical assumptions of coefficient alpha have likely been violated, making 
coefficient alpha estimates of WAIS-IV score reliability biased to an unknown extent. In turn, 
reliance on biased estimates of reliability may result in inaccurate clinical interpretation of 
WAIS-IV score patterns. Consequently, the remainder of this paper will illustrate the appli-
cation of coefficient omega to the WAIS-IV to determine how precisely the WAIS-IV FSIQ and 
factor index scores reflect their intended constructs and whether the WAIS-IV subscale scores 
provide unique information above and beyond the total score.

Method

Participants

Participants were the 2,200 members of the WAIS-IV standardization sample who ranged in 
age from 16 to 90. The standardization sample was obtained using stratified proportional 
sampling across age, sex, race/ethnicity, education level, and geographic region. More 
detailed information is provided in the WAIS-IV Technical and Interpretive Manual (Wechsler, 
2008b).

Instruments

The WAIS-IV is an individual test of intelligence that contains 10 core subtests from which a 
variety of composite scores are computed. First, all 10 core subtests combine to create the 
Full Scale IQ (FSIQ) score. Second, four factor index scores emerge from separate subtests: 
the Verbal Comprehension Index (VCI) and Perceptual Reasoning Index (PRI) are each com-
posed of three subtests, whereas the Working Memory Index (WMI) and Processing Speed 
Index (PSI) are each composed of two subtests. Thus, a priori, the WAIS-IV is hierarchically 
structured and multidimensional and exhibits unequal factor loadings, violating the basic 
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assumptions of unidimensionality and equal factor loadings required for non-biased esti-
mation of coefficient alpha.

Analyses

The subtest correlation matrix and standard deviations of the 10 core subtests for the total 
WAIS-IV standardization sample was extracted from Table 5.1 of the WAIS-V Technical and 
Interpretive Manual (Wechsler, 2008b) to create a covariance matrix (also published in Black 
et al., 2015). As omega is model-based, a higher-order confirmatory factor model consistent 
with that presented in Figure 5.1 of the technical manual was specified in Mplus version 7.4 
(Muthén & Muthén, 2012) using maximum likelihood estimation. This model contained an 
overarching general factor and four first-order factors (VC, PR, WM, and PS) but honored 
simple structure by excluding the small (.19) complex loading of Arithmetic on the VC factor 
accepted by Wechsler (2008b). As expected, model fit was almost identical to that reported 
by Wechsler (2008b), with root mean squared error of approximation (RMSEA) of .067, com-
parative fit index (CFI) of .973, and Tucker-Lewis index of .961. As recommended by Carroll 
(1993, 1995), that hierarchical structure was then orthogonalized (Schmid & Leiman, 1957) 
to allow convenient computation of omega indices.

Results

The resulting WAIS-IV higher-order structure is presented in Figure 1. As expected, it was 
very similar to Figure 5.1 in Wechsler (2008b) and shows that the general factor exerted a 
strong influence on the four first-order factors that, in turn, were strongly loaded by the 
WAIS-IV subtests. These results are consistent with other published analyses of the 

Figure 1.  Higher order structure of the Wechsler Adult Intelligence Scale-Fourth Edition with its 
standardization sample of 2200 particpants.
Notes: SI = Similarities, VO = Vocabulary, IN = Information, BD = Block Design, MR = Matrix Reasoning, VP = Visual Puzzles, 
DS = Digit Span, AR = Arithmetic, CD = Coding, and SS = Symbol Search, VC = Verbal Comprehension factor, PR = Perceptual 
Reasoning factor, WM = Working Memory factor, PS = Processing Speed factor, g = General Intelligence.
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standardization data (Canivez & Watkins, 2010; Gignac & Watkins, 2013; Wechsler, 2008b) 
and data from clinical samples (Miller, Davidson, Schindler, & Messier, 2013; Reynolds, Ingram, 
Seeley, & Newby, 2013).

Reliability coefficients for the WAIS-IV standardization sample were extracted from Table 
4.1 of the technical manual (Wechsler, 2008b, p. 42) and are reported in Table 1.2 A simplified 
omega nomenclature is applied. This terminology was adopted to reduce the confusion 
created by inconsistent use of ω, ωh, ωs, and ωhs in the literature. When applied to the sys-
tematic variance attributable to multiple common factors, ω and ωs are reported for general 
and group factors, respectively. In contrast, ωh and ωhs coefficients are reported as indicators 
of the systematic variance explained by a single general or group factor, respectively.

There is no universally accepted guideline for what constitutes adequate internal con-
sistency reliability for clinical decisions regarding diagnosis and intervention. Various rec-
ommendations have been offered, ranging from .70 (Kline, 1998) to .96 (Kelley, 1927) with 
.80 to .90 most commonly recommended for decisions about individuals (Salvia, Ysseldyke, 
& Bolt, 2010; Thorndike & Thorndike-Christ, 2010). All WAIS-IV composite scores exhibited 
reliability coefficients ≥ .90 (see Table 1), suggesting that they possess adequate reliability 
to support clinical decisions about individuals.

However, in cases where coefficient alpha is likely biased (i.e. multidimensional measures 
like the WAIS-IV with unequal factor loadings), omega coefficients may be more accurate esti-
mates than are alpha coefficients. Like alpha, there is no universally accepted guideline for 
acceptable or adequate levels of omega reliability for clinical decisions, but ω and ωs coefficients 
should meet the same standards as alpha coefficients and ωh and ωhs coefficients should exceed 
.50 at a minimum but .75 would be preferred (Reise, 2012; Reise, Bonifay, & Haviland, 2013).

The degree to which composite scores, like the WAIS-IV FSIQ and index scores, are 
interpretable as a measure of a single common factor (i.e. FSIQ as due to general intelligence, 
VCI as due to verbal comprehension, PRI as due to perceptual reasoning, etc.) is indicated 
by the omega hierarchical coefficients in Table 1. For instance, the ωh coefficient of .84 for 
the FSIQ indicates that 84% of the variance of unit-weighted FSIQ scores can be attributed 
to individual differences on the general intelligence factor. The square root of that ωh (.92) 
is the correlation between the general factor and the observed FSIQ scores (Rodriguez  
et al., 2016b). A comparison of ω (variance due to general and group factors) and ωh (variance 
due to general factor alone) coefficients reveals that almost all of the reliable variance in 
FSIQ scores can be attributed to the general factor (.84 ÷ .93 = .90). Thus, the FSIQ can 
confidently be interpreted as a reliable estimate of general intelligence.3

Table 1. Reliability estimates for Wechsler Adult Intelligence Scale-Fourth Edition composite scores.

Notes: r is coefficient alpha but based on stability coefficients for the Processing Speed Index. ω and ωs are the omega
coefficients for general and group factors, respectively, and indicate the reliability of a multidimensional composite score. 
ωh and ωhs are the omega hierarchical coefficients for general and group factors, respectively, and reflect the reliability
of the single focal factor purportedly being measured by that score. H is the construct reliability or construct replicability 
coefficient of Hancock and Mueller (2001).

aFrom Table 4.1 of the WAIS-IV Technical and Interpretive Manual (Wechsler, 2008b) based on the total standardization 
sample of 2200.

Composite ra ω/ωs ωh/ωhs H
Verbal Comprehension Index .96 .88 .28 .47
Perceptual Reasoning Index .95 .80 .19 .32
Working Memory Index .94 .75 .10 .14
Processing Speed Index .90 .79 .41 .51
Full Scale IQ .98 .93 .84 .89
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In contrast, the ωhs coefficients for the four index scores ranged from .10 to .41, none 
meeting the minimum standard of .50 suggested by Reise (2012). The apparent reliability 
of index scores (i.e. α values of .90 to .96 and ωs values of .75 to .88) was illusory because 
most of the explanatory power in each index score is due to the general factor. For example, 
the ωs coefficient for the VCI score was .88, indicating that 88% of the variance in the VCI 
score was attributable to a blend of general intelligence and verbal comprehension. In con-
trast, the ωhs coefficient of the VCI was .28, indicating that only 28% of the variance in the 
VCI score was attributed to the verbal comprehension construct alone. The square root of 
that .28 ωhs coefficient (.53) is the correlation between the VC group factor and the observed 
VCI scores (Rodriguez et al., 2016b). A comparison of ωs (variance due to the general and VC 
factors) and ωhs (variance due to the VC factor alone) coefficients reveals that only a minor 
portion of the reliable variance in VCI scores can be attributed to the group factor  
(.28 ÷ .88 = .32). To interpret subscale scores with such low ωhs values ‘as representing the 
precise measurement of some latent variable that is unique or different from the general 
factor, clearly, is misguided’ (Rodriguez et al., 2016a, p. 225).

A different perspective on WAIS-IV reliability is offered by the H coefficient of Hancock 
and Mueller (2001). Where an omega hierarchical coefficient represents the correlation 
between a factor and a unit-weighted composite score, H is the correlation between a factor 
and an optimally weighted composite score (Rodriguez et al., 2016b). Thus, H indicates how 
well a particular latent variable is represented by its indicators and is thought of as a measure 
of construct reliability or construct replicability (Rodriguez et al., 2016b). When H is low, the 
latent variable is not very well defined by its indicators and will tend to be unstable across 
studies. Table 1 reveals that only the WAIS-IV general factor was well defined, given a criterion 
value of .70 for H (Hancock & Mueller, 2001; Rodriguez et al., 2016b). Although the group 
factor replicability could be increased if optimally weighted composite scores were used, 
none reached the criterion value of .70.

Discussion

Coefficient alpha may be an inaccurate reliability index for the multidimensional scales that 
are commonly employed by neuropsychologists. In contrast, omega coefficients are model-
based reliability estimates that make fewer and more realistic assumptions than coefficient 
alpha. As an illustration, omega coefficients were computed for WAIS-IV factor indices and 
compared to the reliability coefficients reported by Wechsler (2008b). The apparent high 
reliability of WAIS-IV index scores (i.e. values of .90 to .96) is illusory because most of the 
explanatory power in each index score is due to the general factor: The ωhs coefficients for 
the four index scores (VCI, PRI, WMI, and PSI) indicated that each group factor (VC, PR, WM, 
or PS) uniquely accounted for only 28, 19, 10, and 41%, respectively, of the reliable variance 
of its index score. Given the imprecision with which WAIS-IV factor index scores reflected 
their intended constructs, their interpretation as reliable measures of an underlying group 
factor (i.e. verbal comprehension, perceptual reasoning, working memory, or processing 
speed) is misguided (Brunner et al., 2012; Canivez, 2016; Reise, 2012; Reise et al., 2013; 
Rodriguez et al., 2016a, 2016b). In contrast, 84% of the systematic variance in the FSIQ score 
was attributed to individual differences on the general factor, indicating that the FSIQ is a 
relatively reliable index of general intelligence not substantially affected by the 
multidimensionality caused by group factors (Rodriguez et al., 2016a, 2016b).
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Limitations

As with all statistical indices, omega coefficients have limitations. First, their computation 
requires application of factor analytic models with their attendant sample size demands and 
interpretational complexity. This limitation is ameliorated by simulation research that found 
little bias in omega coefficients generated by both confirmatory and exploratory analyses 
as well as by principal components analyses when sample size was larger than 100 (Zinbarg 
et al., 2006). However, estimates of coefficient alpha are also biased by small sample sizes, 
with computation of both omega and alpha being more precise when sample sizes reach 
300–400 (Charter, 1999). Second, omega coefficients are indices of summed unit-weighted 
scores and cannot be applied to scale scores that are weighted in some other way. Third, 
omega coefficients are estimates of internal consistency reliability and are therefore unable 
to detect some types of measurement error. For example, they are not sensitive to transient 
errors (i.e. examinees’ mood or feelings on any particular day that produce consistent 
responses during the same assessment but inconsistent responses across different assess-
ments). Fourth, omega coefficients are appropriate for multidimensional instruments, espe-
cially those with a hierarchical structure. These characteristics assume the source of variance 
lies at multiple levels (i.e. both general and group) and is orthogonal. Modern cognitive 
batteries, such as the WAIS-IV, with their hierarchically structured constructs are exemplars 
of such multidimensional instruments (Black et al., 2015; Brunner et al., 2012; Gignac & 
Watkins, 2013; Zinbarg et al., 2006). In contrast, instruments without a robust general factor 
are inappropriate candidates for estimation of reliability with omega coefficients. Fifth, there 
is no consensus on the optimal way to compute standard errors for omega coefficients 
(Kelley & Pornprasertmanit, 2016; Padilla & Divers, 2016; Zhang & Yuan, 2016). Although 
analytic estimates have been proposed (Raykov, 2002; Raykov & Zinbarg, 2011), their com-
putation remains difficult and, in the case of bootstrapping methods, requires raw test data 
(Kelley & Cheng, 2012). However, similar ambiguity exists for the computation of standard 
errors for coefficient alpha (Cui & Li, 2012) so this is a shared limitation. In general, boot-
strapped standard errors are probably the most accurate for both alpha and omega (Kelley 
& Pornprasertmanit, 2016). Regardless of method, however, lower reliability values must 
result in wider confidence intervals. Sixth, like all estimates of reliability, omega coefficients 
are based on the scores from a specific sample in a specific setting. The current study relied 
on scores from the WAIS-IV standardization sample. The reliability of scores from a sample 
of neuropsychological patients might differ. Consequently, it is important that model-based 
reliability be investigated among diverse samples. Finally, there is no universally accepted 
guideline for acceptable or adequate levels of omega reliability for clinical decisions, but it 
has been suggested that omega hierarchical coefficients should exceed .50 at a minimum 
with .75 preferable (Reise, 2012). The same uncertainty regarding coefficient alpha seems 
to have resulted in a clinical consensus of .80 to .90 for clinical decisions about individuals. 
Future research will be needed to arrive at a better consensus on guidelines for omega 
coefficients.

Conclusion

Notwithstanding these limitations, similar omega coefficients have been reported when dif-
ferent computation and analytic methods have been applied to WAIS-IV scores (Black et al., 
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2015; Gignac & Watkins, 2013; Nelson, Canivez, & Watkins, 2013) and to scores from other 
intelligence tests (Brunner et al., 2012; Canivez & McGill, 2016; Canivez et al., 2016; Cucina & 
Howardson, 2016; Gomez, Vance, & Watson, 2016a, 2016b; McGeehan, Ndip, & McGill, 2017; 
McGill, 2016; Strickland, Watkins, & Caterino, 2015; Watkins & Beaujean, 2014). Recent simu-
lation research revealed that high subtest score intercorrelations, as typically found in intelli-
gence tests, always increase the reliability of the total score but reduce the distinctiveness of 
subscores (Bulut, Davison, & Rodriguez, 2017). Thus, the current results appear to be reasonable 
in the context of prior research and indicate that coefficient alpha ‘misestimated reliability for 
the simulated and WAIS-IV examples, particularly for total scores’ (Black et al., 2015, p. 469).

Measurement experts have recommended that psychologists and publishers employ 
coefficient omega rather than coefficient alpha because of its ability to identify the sources 
of test score variability and its more realistic statistical assumptions (Black et al., 2015; Chen 
et al., 2012; Dunn et al., 2014; Gignac, 2014; Green & Yang, 2009; Schweizer, 2011). Those 
recommendations were supported by the current study where omega coefficients revealed 
that meaningful interpretation of WAIS-IV factor index scores as unambiguous indicators of 
neurocognitive strengths and weaknesses may be misguided because very little reliable 
variance exists beyond that due to the general factor. Consequently, neuropsychologists  
‘(a) who know what their tests can do and (b) act accordingly’ (Weiner, 1989, p. 829) will base 
their clinical decisions (Charter & Feldt, 2001; Youngstrom & Frazier, 2013) on reliable scores 
as indexed by coefficient omega.

Although not currently available in test manuals, omega can be computed from explor-
atory or confirmatory factor results with a standalone computer program (Watkins, 2013), 
by hand (Brunner et al., 2012), using a so-called ‘phantom variable’ within confirmatory factor 
models (Black et al., 2015; Gignac & Watkins, 2013), and within the R (R Development Core 
Team, 2016) system. Detailed instructions for computation of omega indices, including stand-
ard errors, within the R system have been provided by several authors (Dunn et al., 2014; 
Kelley & Cheng, 2012; Revelle, 2016; Rodriguez et al., 2016b; Zhang & Yuan, 2016).

Notes

1.  �Formulas for omega have been presented by, among others, Brunner, Nagy, and Wilhelm (2012), 
Gignac (2014), McDonald (1999), Reise (2012), and Rodriguez, Reise, and Haviland (2016a, 
2016b). See those publications for technical details.

2.  �Wechsler (2008b, p. 42) reported that ‘reliability coefficients were obtained utilizing the split-half 
and the Cronbach’s coefficient alpha methods … calculated with the formula recommended
by Guilford (1954) and Nunnally and Bernstein (1994).’ Gignac (2014) has suggested that inter-
subtest standard alpha might be more appropriate given the multidimensional nature of the 
WAIS-IV. Standard alpha coefficients are more consistent with ω and ωs coefficients in this case, 
but they remain dependent upon statistical assumptions, including essential tau-equivalence, 
whereas coefficient omega does not.

3.  �Omega may also be computed via bifactor confirmatory analysis and exploratory factor analysis 
models with orthogonalization or target bifactor rotation (Brunner et al., 2012; Reise et al., 2013; 
Zinbarg et al., 2005). The bifactor confirmatory method is preferred by many measurement
specialists (Chen et al., 2012; Green & Yang, 2009; Reise et al., 2013; Rodriguez et al., 2016a, 
2016b) but exploratory models might be useful in the absence of clear theoretical or empirical 
support (Zinbarg et al., 2006). In the current case, results from bifactor confirmatory analysis
and exploratory factor analysis models with orthogonalization were almost identical (±.02) to 
those reported in Table 1. Proportionality constraints might cause some variation in results
from exploratory and confirmatory models with other data (Brunner et al., 2012; Reise, 2012).
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