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ABSTRACT

Objective: To demonstrate that Coefficient omega, a model-based
estimate, is more a more appropriate index of reliability than coefficient
alpha for the multidimensional scales that are commonly employed
by neuropsychologists. Method: As an illustration, a structural model
of an overarching general factor and four first-order factors for the
WAIS-IV based on the standardization sample of 2200 participants
was identified and omega coefficients were subsequently computed
for WAIS-IV composite scores. Results: Alpha coefficients were > .90
and omega coefficients ranged from .75 to .88 for WAIS-IV factor index
scores, indicating that the blend of general and group factor variance
in each index score created a reliable multidimensional composite.
However, the amalgam of variance from general and group factors did
not allow the precision of Full Scale 1Q (FSIQ) and factor index scores
to be disentangled. In contrast, omega hierarchical coefficients were
low for all four factor index scores (.10-.41), indicating that most of
the reliable variance of each factor index score was due to the general
intelligence factor. In contrast, the omega hierarchical coefficient for
the FSIQ score was .84. Conclusions: Meaningful interpretation of
WAIS-IV factor index scores as unambiguous indicators of group
factors is imprecise, thereby fostering unreliable identification of
neurocognitive strengths and weaknesses, whereas the WAIS-IV FSIQ
score can be interpreted as a reliable measure of general intelligence.
It was concluded that neuropsychologists should base their clinical
decisions on reliable scores as indexed by coefficient omega.
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The competent practice of psychology entails adherence to professional standards, including
ethical standards articulated in codes of conduct (e.g. American Psychological Association,
2002) and testing standards enumerated in the Standards for Educational and Psychological
Testing (AERA, APA, and NCME, 2014). Among these testing Standards,‘appropriate evidence
of reliability/precision’ (p. 42) is vital because score validity depends on score reliability (Furr

& Bacharach, 2014).

Reliability of measurement is an especially important foundation of neuropsychological
practice because neuropsychologists often consider low test scores to be indicators of neu-
ropsychological weaknesses (Decker, Hale, & Flanagan, 2013; Heyanka, Holster, & Golden,
2013). To ensure that any identified low test score is genuine and not the result of
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measurement error, its standard error of measurement is consulted (Brooks, Strauss, Sherman,
Iverson, & Slick, 2009; Crawford, Garthwaite, Longman, & Batty, 2012). Of course, the standard
error of measurement for an individual examinee is statistically based on a reliability estimate
for that test score (Furr & Bacharach, 2014).

Conceptually, score reliability can be considered within the classical test theory paradigm
where the observed test score is hypothesized to be composed of two latent independent
components: the true score plus measurement error. Error is presumed to be random but
the true score is, theoretically, the mean score that would be attained if a person took the
test an infinite number of times. Reliability is the ratio of true score variance to error variance
(i.e. its consistency or precision).

Given that the true score is not observable, various ways to objectify it have been devel-
oped (Furr & Bacharach, 2014). Currently, the most popular quantification of score reliability
is coefficient alpha (Streiner, 2003), sometimes called Cronbach’s alpha (Cronbach, 1951).
Alpha’s popularity may be attributed to its ease of computation, reliance on a single test
administration, and straightforward interpretation as percent of true score variance. However,
the accuracy of coefficient alpha, like all statistical models, depends on several assumptions
(Allen &Yen, 1979). Those assumptions include: (a) item errors are uncorrelated; (b) the scale
measures a single construct (i.e. unidimensionality); (c) all items have the same true score
variances; and (d) all items have the same relationship to the measured construct (i.e. equal
factor loadings). A more technical description of parallel, tau-equivalent, and congeneric
assumptions are available in measurement texts (Allen & Yen, 1979; Furr & Bacharach, 2014;
Meyer, 2010).

If its basic assumptions are violated, alpha may either over or under estimate the popu-
lation reliability (Cortina, 1993; Green & Hershberger, 2000; Green, Lissitz, & Mulaik, 1977;
Novick & Lewis, 1967; Raykov, 2001a). Unfortunately, model assumptions are often ignored
or unknown by test users (Graham, 2006; Greenland et al., 2016), including users of coefficient
alpha (Henson, 2001). Further, these assumptions are unrealistic for psychological test data
and likely to be violated in practice (Cho & Kim, 2015). After considering the limitations of
alpha, Cronbach and Shavelson (2004, p. 403) concluded that’l no longer regard the alpha
formula as the most appropriate way to examine most data’ and advocated a component
of variance approach (i.e. generalizability theory).

More recently, measurement specialists have reiterated the limitations of coefficient alpha,
demonstrated that its assumptions are likely violated in practice, and provided alternatives
that are not dependent on such unrealistic assumptions (Green & Yang, 2009; McDonald,
1999; Raykov, 1997, 2001b; Sijtsma, 2009; Simsek & Noyan, 2013; Zinbarg, Revelle, Yovel, &
Li, 2005; Zinbarg, Yovel, Revelle, & McDonald, 2006). These papers have tended to be quite
technical but consistent in concluding that alpha is ‘an inappropriate measure of internal
consistency reliability’ (Dunn, Baguley, & Brunsden, 2014, p. 402).

Model-based reliability estimates are attractive alternatives to alpha that make fewer and
more realistic assumptions (Dunn et al.,, 2014; Reise, 2012). Critically, model-based estimates
are able to properly estimate reliability for multidimensional tests where item scales and
factor loadings differ (Green & Yang, 2009; Hancock & Mueller, 2001). The omega (w) family
of coefficients, first described by McDonald (1999), are the principal model-based reliability
coefficients reported in current research (e.g. Canivez, Watkins, & Dombrowski, 2016). In fact,
coefficient alpha s a special case of omega when alpha’s assumptions are satisfied (McDonald,
1999). Especially for multidimensional constructs, omega“provides a better estimate for the
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composite score [than alpha] and thus should be used (Chen, Hayes, Carver, Laurenceau, &
Zhang, 2012, p. 228). Likewise, Dunn et al. (2014) advised that psychologists ‘change to the
routine reporting of omega in place of alpha’ (p. 409) and Schweizer (2011) suggested that
greater use of omega ‘would be highly desirable’ (p. 144).

Coefficient omega is based on a decomposition of the variance of a test within a factor
analytic model into four parts: (a) a general factor with variance common to all measured
variables; (b) a set of group factors (i.e. variance common to some but not all of the measured
variables); (c) specific factors with variance unique to each measured variable; and (d) random
error (Revelle, 2016). Specific factor variance cannot be disentangled from random error in
a single test administration so they are combined (called uniqueness) in the computation
of omega. Thus, omega replaces the true score theory hypothesis of true and error variance
with the factor analytic conceptualization of common and unique variance.

Several omega variants can be computed to describe how precisely ‘total and subscale
scores reflect their intended constructs’ and determine ‘whether subscale scores provide
unique information above and beyond the total score’ (Rodriguez et al., 20163, p. 223). The
most general omega coefficient is omega total (w), ‘an estimate of the proportion of variance
in the unit-weighted total score attributable to all sources of common variance’ (Rodriguez
et al., 20164, p. 224). High w values indicate a highly reliable multidimensional composite.
However, the amalgam of general and group variance in the computation of w does not
allow the precision of total and subscale scores to be disentangled.

w can also be computed for each subscale score using the same computational logic.
That is, the proportion of each subscale score’s total variance attributed to the blend of
general and group factor variance. Called omega subscale (w,), high values indicate a highly
reliable multidimensional composite but fail to distinguish between precision of the general
factor vs. precision of the group factor. Thus, omega as applied to a total score (w) and as
applied to a subscale score (w,) reflect the systematic variance attributable to multiple com-
mon factors. Similar to coefficient alpha, both w and w_ index the reliability of a multidimen-
sional composite score.

Another omega variant, called omega hierarchical, reflects variance attributable to a com-
mon factor and is therefore a measure of the precision with which a score assesses a single
construct. When applied to the general factor, w, is the ratio of the variance of the general
factor compared to the total test variance and ‘reflects the percentage of systematic variance
in unit-weighted total scores that can be attributed to the individual differences on the
general factor’(Rodriguez et al.,, 2016a, p. 224). A high w, coefficient indicates that the general
factor is the dominant source of systematic variance in the test score. Conversely, a low w,
coefficient indicates that group factors and/or uniqueness account for the majority of reliable
variance in the test score.

When applied to group factors, the omega hierarchical variant (w, ) indicates the propor-
tion of variance in the subscale score that is accounted for by its intended group factor (e.g.
verbal comprehension factor in the VCl score, working memory factor in the WMl score, etc.)
to the total variance of that subscale score and indexes the reliable variance associated with
that subscale after controlling for the effects of the general factor. If w,  is low relative to w,,
most of the reliable variance of that subscale is due to the general factor, which precludes
meaningful interpretation of that subscale score as an unambiguous indicator of a group
factor (Rodriguez et al., 2016b). In contrast, a robust w, coefficient suggests that most of
the reliable variance of that subscale is independent of the general factor and clinical
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interpretation of an examinee’s strengths and weaknesses beyond the general factor can
be conducted (Brunner et al., 2012; DeMars, 2013; Reise, 2012).

The relatively recent development of omega has not yet been reflected in the technical
manuals of most psychological tests (Black, Yang, Beitra, & McCaffrey, 2015), nor have omega
coefficients been reported for the cognitive tests that are frequently employed by neuropsy-
chologists (Mihura, Roy, & Graceffo, 2017). For example, neuropsychologists frequently inter-
pret score profiles from the Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV;
Wechsler, 2008a) to identify neurocognitive strengths and weaknesses (Crawford et al., 2012;
Donders & Strong, 2015; Glass, Ryan, & Charter, 2010; Puente & Puente, 2013; Rabin, Paolillo,
& Barr, 2016; Silver et al., 2008). Coefficient alpha reliability estimates are available for the
WAIS-IV (Wechsler, 2008b) and are generally quite high (Groth-Marnat, 2009). Given these
strong reliability coefficients, clinicians have been encouraged to interpret WAIS-IV score
patterns, especially those at the factor index level (Groth-Marnat, 2009; Lichtenberger &
Kaufman, 2009; Sattler & Ryan, 2009), and neuropsychologists routinely do so (Howieson &
Lezak, 2012; Larrabee, 2014).

Establishing sufficient reliability is necessary for all educational and psychological testing
applications (AERA, APA, and NCME, 2014) and especially important for evaluating the clinical
utility of neuropsychological testing (Frazier, Youngstrom, Chelune, Naugle, & Lineweaver,
2004). Given that the WAIS-IV is hierarchically structured and thus multidimensional (Carroll,
1993), the statistical assumptions of coefficient alpha have likely been violated, making
coefficient alpha estimates of WAIS-IV score reliability biased to an unknown extent. In turn,
reliance on biased estimates of reliability may result in inaccurate clinical interpretation of
WAIS-IV score patterns. Consequently, the remainder of this paper will illustrate the appli-
cation of coefficient omega to the WAIS-IV to determine how precisely the WAIS-IV FSIQ and
factor index scores reflect their intended constructs and whether the WAIS-IV subscale scores
provide unique information above and beyond the total score.

Method
Participants

Participants were the 2,200 members of the WAIS-IV standardization sample who ranged in
age from 16 to 90. The standardization sample was obtained using stratified proportional
sampling across age, sex, race/ethnicity, education level, and geographic region. More
detailed information is provided in the WAIS-IV Technical and Interpretive Manual (Wechsler,
2008b).

Instruments

The WAIS-IV is an individual test of intelligence that contains 10 core subtests from which a
variety of composite scores are computed. First, all 10 core subtests combine to create the
Full Scale 1Q (FSIQ) score. Second, four factor index scores emerge from separate subtests:
the Verbal Comprehension Index (VCl) and Perceptual Reasoning Index (PRI) are each com-
posed of three subtests, whereas the Working Memory Index (WMI) and Processing Speed
Index (PSI) are each composed of two subtests. Thus, a priori, the WAIS-IV is hierarchically
structured and multidimensional and exhibits unequal factor loadings, violating the basic
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assumptions of unidimensionality and equal factor loadings required for non-biased esti-
mation of coefficient alpha.

Analyses

The subtest correlation matrix and standard deviations of the 10 core subtests for the total
WAIS-IV standardization sample was extracted from Table 5.1 of the WAIS-V Technical and
Interpretive Manual (Wechsler, 2008b) to create a covariance matrix (also published in Black
etal.,, 2015). As omega is model-based, a higher-order confirmatory factor model consistent
with that presented in Figure 5.1 of the technical manual was specified in Mplus version 7.4
(Muthén & Muthén, 2012) using maximum likelihood estimation. This model contained an
overarching general factor and four first-order factors (VC, PR, WM, and PS) but honored
simple structure by excluding the small (.19) complex loading of Arithmetic on the VC factor
accepted by Wechsler (2008b). As expected, model fit was almost identical to that reported
by Wechsler (2008b), with root mean squared error of approximation (RMSEA) of .067, com-
parative fit index (CFI) of .973, and Tucker-Lewis index of .961. As recommended by Carroll
(1993, 1995), that hierarchical structure was then orthogonalized (Schmid & Leiman, 1957)
to allow convenient computation of omega indices.

Results

The resulting WAIS-IV higher-order structure is presented in Figure 1. As expected, it was
very similar to Figure 5.1 in Wechsler (2008b) and shows that the general factor exerted a
strong influence on the four first-order factors that, in turn, were strongly loaded by the
WAIS-IV subtests. These results are consistent with other published analyses of the

.82 .87

.83 .89 .81 . . 73 82 85 76
|s1||vo||m| |BD||MR||VP| |DS||AR| |CD||SS|

Figure 1. Higher order structure of the Wechsler Adult Intelligence Scale-Fourth Edition with its
standardization sample of 2200 particpants.

Notes: SI = Similarities, VO = Vocabulary, IN = Information, BD = Block Design, MR = Matrix Reasoning, VP = Visual Puzzles,
DS = Digit Span, AR = Arithmetic, CD = Coding, and SS = Symbol Search, VC = Verbal Comprehension factor, PR = Perceptual
Reasoning factor, WM = Working Memory factor, PS = Processing Speed factor, g = General Intelligence.
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standardization data (Canivez & Watkins, 2010; Gignac & Watkins, 2013; Wechsler, 2008b)
and data from clinical samples (Miller, Davidson, Schindler, & Messier, 2013; Reynolds, Ingram,
Seeley, & Newby, 2013).

Reliability coefficients for the WAIS-IV standardization sample were extracted from Table
4.1 of the technical manual (Wechsler, 2008b, p. 42) and are reported in Table 1.2 A simplified
omega nomenclature is applied. This terminology was adopted to reduce the confusion
created by inconsistent use of w, W, W, and W, in the literature. When applied to the sys-
tematic variance attributable to multiple common factors, w and w, are reported for general
and group factors, respectively. In contrast, w, and w,  coefficients are reported as indicators
of the systematic variance explained by a single general or group factor, respectively.

There is no universally accepted guideline for what constitutes adequate internal con-
sistency reliability for clinical decisions regarding diagnosis and intervention. Various rec-
ommendations have been offered, ranging from .70 (Kline, 1998) to .96 (Kelley, 1927) with
.80 to .90 most commonly recommended for decisions about individuals (Salvia, Ysseldyke,
& Bolt, 2010; Thorndike & Thorndike-Christ, 2010). All WAIS-IV composite scores exhibited
reliability coefficients > .90 (see Table 1), suggesting that they possess adequate reliability
to support clinical decisions about individuals.

However, in cases where coefficient alpha is likely biased (i.e. multidimensional measures
like the WAIS-IV with unequal factor loadings), omega coefficients may be more accurate esti-
mates than are alpha coefficients. Like alpha, there is no universally accepted guideline for
acceptable or adequate levels of omega reliability for clinical decisions, but w and w, coefficients
should meet the same standards as alpha coefficients and w, and w, _coefficients should exceed
.50 at a minimum but .75 would be preferred (Reise, 2012; Reise, Bonifay, & Haviland, 2013).

The degree to which composite scores, like the WAIS-IV FSIQ and index scores, are
interpretable as a measure of a single common factor (i.e. FSIQ as due to general intelligence,
V(I as due to verbal comprehension, PRI as due to perceptual reasoning, etc.) is indicated
by the omega hierarchical coefficients in Table 1. For instance, the w, coefficient of .84 for
the FSIQ indicates that 84% of the variance of unit-weighted FSIQ scores can be attributed
to individual differences on the general intelligence factor. The square root of that w, (.92)
is the correlation between the general factor and the observed FSIQ scores (Rodriguez
etal., 2016b). A comparison of w (variance due to general and group factors) and w, (variance
due to general factor alone) coefficients reveals that almost all of the reliable variance in
FSIQ scores can be attributed to the general factor (.84 + .93 =.90). Thus, the FSIQ can
confidently be interpreted as a reliable estimate of general intelligence.3

Table 1. Reliability estimates for Wechsler Adult Intelligence Scale-Fourth Edition composite scores.

Composite r w/w, w,/w, H
Verbal Comprehension Index .96 .88 .28 A7
Perceptual Reasoning Index 95 .80 19 32
Working Memory Index 94 75 .10 14
Processing Speed Index .90 79 A1 51
Full Scale IQ .98 .93 .84 .89

Notes: r is coefficient alpha but based on stability coefficients for the Processing Speed Index. w and w, are the omega
coefficients for general and group factors, respectively, and indicate the reliability of a multidimensional composite score.
w, and w,are the omega hierarchical coefficients for general and group factors, respectively, and reflect the reliability
of the single focal factor purportedly being measured by that score. H is the construct reliability or construct replicability
coefficient of Hancock and Mueller (2001).

2From Table 4.1 of the WAIS-IV Technical and Interpretive Manual (Wechsler, 2008b) based on the total standardization
sample of 2200.
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In contrast, the W, coefficients for the four index scores ranged from .10 to .41, none
meeting the minimum standard of .50 suggested by Reise (2012). The apparent reliability
of index scores (i.e. a values of .90 to .96 and w_ values of .75 to .88) was illusory because
most of the explanatory power in each index score is due to the general factor. For example,
the w, coefficient for the VCl score was .88, indicating that 88% of the variance in the VCI
score was attributable to a blend of general intelligence and verbal comprehension. In con-
trast, the W, coefficient of the VCl was .28, indicating that only 28% of the variance in the
VCl score was attributed to the verbal comprehension construct alone. The square root of
that .28 w, coefficient (.53) is the correlation between the VC group factor and the observed
VCl scores (Rodriguez et al., 2016b). A comparison of w, (variance due to the general and VC
factors) and w,, (variance due to the VC factor alone) coefficients reveals that only a minor
portion of the reliable variance in VCl scores can be attributed to the group factor
(.28 + .88 =.32). To interpret subscale scores with such low W, values ‘as representing the
precise measurement of some latent variable that is unique or different from the general
factor, clearly, is misguided’ (Rodriguez et al., 20164, p. 225).

A different perspective on WAIS-IV reliability is offered by the H coefficient of Hancock
and Mueller (2001). Where an omega hierarchical coefficient represents the correlation
between a factor and a unit-weighted composite score, His the correlation between a factor
and an optimally weighted composite score (Rodriguez et al., 2016b). Thus, H indicates how
well a particular latent variable is represented by its indicators and is thought of as a measure
of construct reliability or construct replicability (Rodriguez et al., 2016b). When H is low, the
latent variable is not very well defined by its indicators and will tend to be unstable across
studies.Table 1 reveals that only the WAIS-IV general factor was well defined, given a criterion
value of .70 for H (Hancock & Mueller, 2001; Rodriguez et al., 2016b). Although the group
factor replicability could be increased if optimally weighted composite scores were used,
none reached the criterion value of .70.

Discussion

Coefficient alpha may be an inaccurate reliability index for the multidimensional scales that
are commonly employed by neuropsychologists. In contrast, omega coefficients are model-
based reliability estimates that make fewer and more realistic assumptions than coefficient
alpha. As an illustration, omega coefficients were computed for WAIS-IV factor indices and
compared to the reliability coefficients reported by Wechsler (2008b). The apparent high
reliability of WAIS-IV index scores (i.e. values of .90 to .96) is illusory because most of the
explanatory power in each index score is due to the general factor: The w, coefficients for
the four index scores (VCI, PRI, WMI, and PSI) indicated that each group factor (VC, PR, WM,
or PS) uniquely accounted for only 28, 19, 10, and 41%, respectively, of the reliable variance
of its index score. Given the imprecision with which WAIS-IV factor index scores reflected
their intended constructs, their interpretation as reliable measures of an underlying group
factor (i.e. verbal comprehension, perceptual reasoning, working memory, or processing
speed) is misguided (Brunner et al., 2012; Canivez, 2016; Reise, 2012; Reise et al., 2013;
Rodriguez et al.,, 2016a, 2016b). In contrast, 84% of the systematic variance in the FSIQ score
was attributed to individual differences on the general factor, indicating that the FSIQ is a
relatively reliable index of general intelligence not substantially affected by the
multidimensionality caused by group factors (Rodriguez et al., 2016a, 2016b).
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Limitations

As with all statistical indices, omega coefficients have limitations. First, their computation
requires application of factor analytic models with their attendant sample size demands and
interpretational complexity. This limitation is ameliorated by simulation research that found
little bias in omega coefficients generated by both confirmatory and exploratory analyses
as well as by principal components analyses when sample size was larger than 100 (Zinbarg
et al.,, 2006). However, estimates of coefficient alpha are also biased by small sample sizes,
with computation of both omega and alpha being more precise when sample sizes reach
300-400 (Charter, 1999). Second, omega coefficients are indices of summed unit-weighted
scores and cannot be applied to scale scores that are weighted in some other way. Third,
omega coefficients are estimates of internal consistency reliability and are therefore unable
to detect some types of measurement error. For example, they are not sensitive to transient
errors (i.e. examinees’ mood or feelings on any particular day that produce consistent
responses during the same assessment but inconsistent responses across different assess-
ments). Fourth, omega coefficients are appropriate for multidimensional instruments, espe-
cially those with a hierarchical structure. These characteristics assume the source of variance
lies at multiple levels (i.e. both general and group) and is orthogonal. Modern cognitive
batteries, such as the WAIS-IV, with their hierarchically structured constructs are exemplars
of such multidimensional instruments (Black et al., 2015; Brunner et al,, 2012; Gignac &
Watkins, 2013; Zinbarg et al., 2006). In contrast, instruments without a robust general factor
are inappropriate candidates for estimation of reliability with omega coefficients. Fifth, there
is no consensus on the optimal way to compute standard errors for omega coefficients
(Kelley & Pornprasertmanit, 2016; Padilla & Divers, 2016; Zhang & Yuan, 2016). Although
analytic estimates have been proposed (Raykov, 2002; Raykov & Zinbarg, 2011), their com-
putation remains difficult and, in the case of bootstrapping methods, requires raw test data
(Kelley & Cheng, 2012). However, similar ambiguity exists for the computation of standard
errors for coefficient alpha (Cui & Li, 2012) so this is a shared limitation. In general, boot-
strapped standard errors are probably the most accurate for both alpha and omega (Kelley
& Pornprasertmanit, 2016). Regardless of method, however, lower reliability values must
result in wider confidence intervals. Sixth, like all estimates of reliability, omega coefficients
are based on the scores from a specific sample in a specific setting. The current study relied
on scores from the WAIS-IV standardization sample. The reliability of scores from a sample
of neuropsychological patients might differ. Consequently, it is important that model-based
reliability be investigated among diverse samples. Finally, there is no universally accepted
guideline for acceptable or adequate levels of omega reliability for clinical decisions, but it
has been suggested that omega hierarchical coefficients should exceed .50 at a minimum
with .75 preferable (Reise, 2012). The same uncertainty regarding coefficient alpha seems
to have resulted in a clinical consensus of .80 to .90 for clinical decisions about individuals.
Future research will be needed to arrive at a better consensus on guidelines for omega
coefficients.

Conclusion

Notwithstanding these limitations, similar omega coefficients have been reported when dif-
ferent computation and analytic methods have been applied to WAIS-IV scores (Black et al.,
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2015; Gignac & Watkins, 2013; Nelson, Canivez, & Watkins, 2013) and to scores from other
intelligence tests (Brunner et al., 2012; Canivez & McGill, 2016; Canivez et al., 2016; Cucina &
Howardson, 2016; Gomez, Vance, & Watson, 20163, 2016b; McGeehan, Ndip, & McGill, 2017;
McGill, 2016; Strickland, Watkins, & Caterino, 2015; Watkins & Beaujean, 2014). Recent simu-
lation research revealed that high subtest score intercorrelations, as typically found in intelli-
gence tests, always increase the reliability of the total score but reduce the distinctiveness of
subscores (Bulut, Davison, & Rodriguez, 2017). Thus, the current results appear to be reasonable
in the context of prior research and indicate that coefficient alpha‘misestimated reliability for
the simulated and WAIS-IV examples, particularly for total scores’ (Black et al., 2015, p. 469).

Measurement experts have recommended that psychologists and publishers employ
coefficient omega rather than coefficient alpha because of its ability to identify the sources
of test score variability and its more realistic statistical assumptions (Black et al., 2015; Chen
et al,, 2012; Dunn et al., 2014; Gignac, 2014; Green & Yang, 2009; Schweizer, 2011). Those
recommendations were supported by the current study where omega coefficients revealed
that meaningful interpretation of WAIS-IV factor index scores as unambiguous indicators of
neurocognitive strengths and weaknesses may be misguided because very little reliable
variance exists beyond that due to the general factor. Consequently, neuropsychologists
‘(@) who know what their tests can do and (b) act accordingly’ (Weiner, 1989, p. 829) will base
their clinical decisions (Charter & Feldt, 2001; Youngstrom & Frazier, 2013) on reliable scores
as indexed by coefficient omega.

Although not currently available in test manuals, omega can be computed from explor-
atory or confirmatory factor results with a standalone computer program (Watkins, 2013),
by hand (Brunner et al., 2012), using a so-called‘phantom variable’within confirmatory factor
models (Black et al., 2015; Gignac & Watkins, 2013), and within the R (R Development Core
Team, 2016) system. Detailed instructions for computation of omega indices, including stand-
ard errors, within the R system have been provided by several authors (Dunn et al., 2014;
Kelley & Cheng, 2012; Revelle, 2016; Rodriguez et al., 2016b; Zhang & Yuan, 2016).

Notes

1. Formulas for omega have been presented by, among others, Brunner, Nagy, and Wilhelm (2012),
Gignac (2014), McDonald (1999), Reise (2012), and Rodriguez, Reise, and Haviland (2016a,
2016b). See those publications for technical details.

2. Wechsler (2008b, p. 42) reported that ‘reliability coefficients were obtained utilizing the split-half
and the Cronbach’s coefficient alpha methods ... calculated with the formula recommended
by Guilford (1954) and Nunnally and Bernstein (1994).! Gignac (2014) has suggested that inter-
subtest standard alpha might be more appropriate given the multidimensional nature of the
WAIS-IV. Standard alpha coefficients are more consistent with w and w_ coefficients in this case,
but they remain dependent upon statistical assumptions, including essential tau-equivalence,
whereas coefficient omega does not.

3. Omega may also be computed via bifactor confirmatory analysis and exploratory factor analysis
models with orthogonalization or target bifactor rotation (Brunner et al., 2012; Reise et al., 2013;
Zinbarg et al., 2005). The bifactor confirmatory method is preferred by many measurement
specialists (Chen et al., 2012; Green & Yang, 2009; Reise et al., 2013; Rodriguez et al., 2016a,
2016b) but exploratory models might be useful in the absence of clear theoretical or empirical
support (Zinbarg et al., 2006). In the current case, results from bifactor confirmatory analysis
and exploratory factor analysis models with orthogonalization were almost identical (+.02) to
those reported in Table 1. Proportionality constraints might cause some variation in results
from exploratory and confirmatory models with other data (Brunner et al., 2012; Reise, 2012).



1122 (@) M.W.WATKINS

Disclosure statement

No potential conflict of interest was reported by the author.

ORCID
Marley W. Watkins "= http://orcid.org/0000-0001-6352-7174

References

Allen, M. J., & Yen, W. M. (1979). Introduction to measurement theory. Monterrey, CA: Brooks/Cole.

American Educational Research Association, American Psychological Association, & National Council on
Measurement in Education. (2014). Standards for educational and psychological testing. Washington,
DC: Author.

American Psychological Association. (2002). Ethical principles of psychologists and code of conduct.
American Psychologist, 57, 1060-1073. doi:10.1037//0003-066X.57.12.1060

Black, R. A, Yang, Y., Beitra, D., & McCaffrey, S. (2015). Comparing fit and reliability estimates of
a psychological instrument using second-order CFA, bifactor, and essentially tau-equivalent
(coefficient alpha) models via AMOS 22. Journal of Psychoeducational Assessment, 33, 451-472.
doi:10.1177/0734282914553551

Brooks, B. L., Strauss, E., Sherman, E. M. S, Iverson, G. L., & Slick, D. J. (2009). Developments in
neuropsychological assessment: Refining psychometric and clinical interpretive methods. Canadian
Psychology, 50, 196-209. doi:10.1037/a0016066

Brunner, M., Nagy, G., & Wilhelm, O. (2012). A tutorial on hierarchically structured constructs. Journal
of Personality, 80, 796-846. doi:10.1111/j.1467-6494.2011.00749.x

Bulut, O., Davison, M. L., & Rodriguez, M. C. (2017). Estimating between-person and within-person
subscore reliability with profile analysis. Multivariate Behavioral Research, 52, 86-104. doi:10.1080/
00273171.2016.1253452

Canivez, G. L. (2016). Bifactor modeling in construct validation of multifactored tests: Implications for
understanding multidimensional constructs and test interpretation. In K. Schweizer & C. DiStefano
(Eds.), Principles and methods of test construction: Standards and recent advancements (pp. 247-271).
Gottinger: Hogrefe.

Canivez, G. L., & McGill, R. J. (2016). Factor structure of the differential ability scales-second edition:
Exploratory and hierarchical factor analyses with the core subtests. Psychological Assessment, 28,
1475-1488. doi:10.1037/pas0000279

Canivez, G. L., & Watkins, M. W. (2010). Investigation of the factor structure of the Wechsler Adult
Intelligence Scale-Fourth Edition (WAIS-IV): Exploratory and higher order factor analyses.
Psychological Assessment, 22, 827-836. doi:10.1037/a0020429

Canivez, G. L., Watkins, M. W., & Dombrowski, S. C. (2016). Factor structure of the Wechsler Intelligence
Scale for Children-Fifth Edition: Exploratory factor analyses with the 16 primary and secondary
subtests. Psychological Assessment, 28, 975-986. doi:10.1037/pas0000238

Carroll, J. B.(1993). Human cognitive abilities: A survey of factor-analytic studies. New York, NY: Cambridge
University Press.

Carroll, J. B. (1995). On methodology in the study of cognitive abilities. Multivariate Behavioral Research,
30, 429-452. doi:10.1207/515327906mbr3003_6

Charter, R. A. (1999). Sample size requirements for precise estimates of reliability, generalizability, and
validity coefficients. Journal of Clinical and Experimental Neuropsychology, 21, 559-566.

Charter,R. A, &FFeldt, L.S. (2001). Meaning of reliability in terms of correct and incorrect clinical decisions:
The art of decision making is still alive. Journal of Clinical and Experimental Neuropsychology, 23,
530-537.

Chen, F. F, Hayes, A., Carver, C. S., Laurenceau, J.-P,, & Zhang, Z. (2012). Modeling general and specific
variance in multifaceted constructs: A comparison of the bifactor model to other approaches. Journal
of Personality, 80, 219-251. doi:10.1111/j.1467-6494.2011.00739.x


http://orcid.org
http://orcid.org/0000-0001-6352-7174
http://doi.org/10.1037//0003-066X.57.12.1060
http://doi.org/10.1177/0734282914553551
http://doi.org/10.1037/a0016066
http://doi.org/10.1111/j.1467-6494.2011.00749.x
http://doi.org/10.1080/00273171.2016.1253452
http://doi.org/10.1080/00273171.2016.1253452
http://doi.org/10.1037/pas0000279
http://doi.org/10.1037/a0020429
http://doi.org/10.1037/pas0000238
http://doi.org/10.1207/s15327906mbr3003_6
http://doi.org/10.1111/j.1467-6494.2011.00739.x

THE CLINICAL NEUROPSYCHOLOGIST . 1123

Cho, E., & Kim, S.(2015). Cronbach’s coefficient alpha: Well known but poorly understood. Organizational
Research Methods, 18, 207-230. doi:10.1177/1094428114555994

Cortina, J. M. (1993). What is coefficient alpha? An examination of theory and applications. Journal of
Applied Psychology, 78, 98-104. doi:10.1037/0021-9010.78.1.98

Crawford, J. R., Garthwaite, P. H.,, Longman, R. S., & Batty, A. M. (2012). Some supplementary methods for
the analysis of WAIS-IV index scores in neuropsychological assessment. Journal of Neuropsychology,
6,192-211.doi:10.1111/j.1748-6653.2011.02022.x

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16,297-334.
doi:10.1007/BF02310555

Cronbach, L. J., & Shavelson, R. J. (2004). My current thoughts on coefficient alpha and successor
procedures. Educational and Psychological Measurement, 64,391-418.doi:10.1177/0013164404266386

Cucina, J. M., & Howardson, G. N. (2016, November 10). Woodcock-Johnson Ill, Kaufman Adolescent
and Adult Intelligence Test (KAIT), Kaufman Assessment Battery for Children (KABC), and Differential
Ability Scales (DAS) support Carroll but not Cattell-Horn. Psychological Assessment. Advance online.
doi:10.1037/pas0000389

Cui, Y., &Li, J. (2012). Evaluating the performance of different procedures for constructing confidence
intervals for coefficient alpha: A simulation study. British Journal of Mathematical and Statistical
Psychology, 65, 467-498. doi:10.1111/j.2044-8317.2012.02038.x

Decker, S. L., Hale, J. B.,, & Flanagan, D. P. (2013). Professional practice issues in the assessment of
cognitive functioning for educational applications. Psychology in the Schools, 50, 300-313.
doi:10.1002/pits.21675

DeMars, C. E. (2013). A tutorial on interpreting bifactor model scores. International Journal of Testing,
13,354-378. doi:10.1080/15305058.2013.799067

Donders, J., & Strong, C.-A. H. (2015). Clinical utility of the Wechsler Adult Intelligence Scale-Fourth
Edition after traumatic brain injury. Assessment, 22, 17-22. doi:10.1177/1073191114530776

Dunn,T.J, Baguley, T., & Brunsden, V. (2014). From alpha to omega: A practical solution to the pervasive
problem of internal consistency estimation. British Journal of Psychology, 105,399-412.doi:10.1111/
bjop.12046

Frazier, T. W., Youngstrom, E. A,, Chelune, G. J., Naugle, R. I, & Lineweaver, T. T. (2004). Increasing the
reliability of ipsative interpretations in neuropsychology: A comparison of reliable components
analysis and other factor analytic methods. Journal of the International Neuropsychological Society,
10, 578-589. d0i:10.1017/51355617704104049

Furr, R. M., & Bacharach, V. R. (2014). Psychometrics: An introduction (2nd ed.). Thousand Oaks, CA: Sage.

Gignac, G. E. (2014). On the inappropriateness of using items to calculate total scale score reliability
via coefficient alpha for multidimensional scales. European Journal of Psychological Assessment, 30,
130-139. d0i:10.1027/1015-5759/a000181

Gignac, G. E., & Watkins, M. W. (2013). Bifactor modeling and the estimation of model-based reliability
in the WAIS-IV. Multivariate Behavioral Research, 48, 639-662. doi:10.1080/00273171.2013.804398

Glass, L. A.,Ryan, J. J,, & Charter, R. A.(2010). Discrepancy score reliabilities in the WAIS-IV standardization
sample. Journal of Psychoeducational Assessment, 28, 201-208. doi:10.1177/0734282909346710

Gomez, R., Vance, A., & Watson, S. D. (2016a). Structure of the Wechsler Intelligence Scale for Children-
Fourth Edition in a group of children with ADHD. Frontiers in Psychology, 7(737), 1-11. d0i:10.3389/
fpsyg.2016.00737

Gomez, R, Vance, A.,, & Watson, S. D. (2016b). Bifactor model of WISC-IV: Applicability and measurement
invariance in low and normal IQ groups. Psychological Assessment. Advance online publication.
doi:10.1037/pas0000369

Graham, J. M. (2006). Congeneric and (Essentially) tau-equivalent estimates of score reliability:
What they are and how to use them. Educational and Psychological Measurement, 66, 930-944.
doi:10.1177/0013164406288165

Green, S. B, & Hershberger, S. L. (2000). Correlated errors in true score models and their effect on
coefficient alpha. Structural Equation Modeling, 7, 251-270. doi:10.1207/515328007SEM0702_6

Green, S. B, Lissitz, R. W,, & Mulaik, S. A. (1977). Limitations of coefficient alpha as an index
of test unidimensionality. Educational and Psychological Measurement, 37, 827-838.
doi:10.1177/001316447703700403


http://doi.org/10.1177/1094428114555994
http://doi.org/10.1037/0021-9010.78.1.98
http://doi.org/10.1111/j.1748-6653.2011.02022.x
http://doi.org/10.1007/BF02310555
http://doi.org/10.1177/0013164404266386
http://doi.org/10.1037/pas0000389
http://doi.org/10.1111/j.2044-8317.2012.02038.x
http://doi.org/10.1002/pits.21675
http://doi.org/10.1080/15305058.2013.799067
http://doi.org/10.1177/1073191114530776
http://doi.org/10.1111/bjop.12046
http://doi.org/10.1111/bjop.12046
http://doi.org/10.1017/S1355617704104049
http://doi.org/10.1027/1015-5759/a000181
http://doi.org/10.1080/00273171.2013.804398
http://doi.org/10.1177/0734282909346710
http://doi.org/10.3389/fpsyg.2016.00737
http://doi.org/10.3389/fpsyg.2016.00737
http://doi.org/10.1037/pas0000369
http://doi.org/10.1177/0013164406288165
http://doi.org/10.1207/S15328007SEM0702_6
http://doi.org/10.1177/001316447703700403

1124 M. W. WATKINS

Green, S. B, & Yang, Y. (2009). Commentary on coefficient alpha: A cautionary tale. Psychometrika, 74,
121-135.doi:10.1007/511336-008-9098-4

Greenland, S., Senn, S. J,, Rothman, K. J,, Carlin, J. B., Poole, C., Goodman, S. N., & Altman, D. G. (2016).
Statistical test, P values, confidence intervals, and power: A guide to misinterpretations. European
Journal of Epidemiology, 31, 337-350. doi:10.1007/s10654-016-0149-3

Groth-Marnat, G. (2009). Handbook of psychological assessment (5th ed.). Hoboken, NJ: Wiley.

Guilford, J. P. (1954). Psychometric methods (2nd ed.). New York, NY: McGraw-Hill.

Hancock, G. R., & Mueller, R. O. (2001). Rethinking construct reliability within latent variable systems.
In R. Cudeck, S. du Toit, & D. Sorbom (Eds.), Structural equation modeling: Present and future
(pp. 195-216). Lincolnwood, IL: Scientific Software International.

Henson, R.K. (2001). Understanding internal consistency reliability estimates: A conceptual primer on
coefficient alpha. Measurement and Evaluation in Counseling and Development, 34, 177-189.

Heyanka, D. J.,, Holster, J. L., & Golden, C. J. (2013). Intraindividual neuropsychological test variability in
healthy individuals with high average intelligence and educational attainment. International Journal
of Neuroscience, 123, 526-531. doi:10.3109/00207454.2013.771261

Howieson, D. B., & Lezak, M. D. (2012). The neuropsychological evaluation. In S. C. Yudofsky &
R.E.Hales (Eds.), Clinical manual of neuropsychiatry (pp. 1-26). Washington, DC: American Psychiatric
Association.

Kelley, T. L. (1927). Interpretation of educational measurements. Chicago, IL: World Book Company.

Kelley, K., & Cheng, Y. (2012). Estimation of and confidence interval formation for reliability coefficients of
homogeneous measurement instruments. Methodology, 8, 39-50.doi:10.1027/1614-2241/a000036

Kelley, K., & Pornprasertmanit, S. (2016). Confidence intervals for population reliability coefficients:
Evaluation of methods, recommendations, and software for composite measures. Psychological
Methods, 21, 69-92. doi:10.1037/a0040086

Kline, P. (1998). The new psychometrics: Science, psychology, and measurement. London: Routledge.

Larrabee, G. J. (2014). Test validity and performance validity: Considerations in providing a framework
for development of an ability-focused neuropsychological test battery. Archives of Clinical
Neuropsychology, 29, 695-714. doi:10.1093/arclin/acu049

Lichtenberger, E. O, & Kaufman, A.S. (2009). Essentials of WAIS-IV assessment. Hoboken, NJ: Wiley.

McDonald, R. P. (1999). Test theory: A unified approach. Mahwah, NJ: Erlbaum.

McGeehan, B., Ndip, N., & McGill, R. J. (2017). Exploring the multidimensional structure of the WASI-II:
Further insights from Schmid-Leiman higher-order and exploratory bifactor solutions. Archives of
Assessment Psychology, 7, 7-27.

McGill, R. J. (2016). Invalidating the full scale 1Q score in the presence of significant factor score
variability: Clinical acumen or clinical illusion? Archives of Assessment Psychology, 6, 33-63.

Meyer, J. P. (2010). Reliability. New York, NY: Oxford University Press.

Mihura, J. L., Roy, M., & Graceffo, R. A. (2017). Psychological assessment training in clinical psychology
doctoral programs. Journal of Personality Assessment, 99, 153-164. doi:10.1080/00223891.2016.12
01978

Miller, D. 1., Davidson, P. S. R., Schindler, D., & Messier, C. (2013). Confirmatory factor analysis of the
WAIS-IV and WMS-IV in older adults. Journal of Psychoeducational Assessment, 31, 375-390.
doi:10.1177/0734282912467961

Muthén, L. K., & Muthén, B. O. (2012). Mplus user’s guide (7th ed.). Los Angeles, CA: Muthén & Muthén.

Nelson, J. M., Canivez, G. L., & Watkins, M.W. (2013). Structural and incremental validity of the Wechsler
Adult Intelligence Scale-Fourth Edition with a clinical sample. Psychological Assessment, 25,618-630.
doi:10.1037/a0032086

Novick, M. R., & Lewis, C. (1967). Coefficient alpha and the reliability of composite measurements.
Psychometrika, 32, 1-13. doi:10.1007/BF02289400

Nunnally, J., & Bernstein, I. H. (1994). Psychometric theory (3rd ed.). New York, NY: Mc-Graw-Hill.

Padilla, M. A., & Divers, J. (2016). A comparison of composite reliability estimators: Coefficient omega
confidence intervals in the current literature. Educational and Psychological Measurement, 76, 436—
453.doi:10.1177/0013164415593776


http://doi.org/10.1007/S11336-008-9098-4
http://doi.org/10.1007/s10654-016-0149-3
http://doi.org/10.3109/00207454.2013.771261
http://doi.org/10.1027/1614-2241/a000036
http://doi.org/10.1037/a0040086
http://doi.org/10.1093/arclin/acu049
http://doi.org/10.1080/00223891.2016.1201978
http://doi.org/10.1080/00223891.2016.1201978
http://doi.org/10.1177/0734282912467961
http://doi.org/10.1037/a0032086
http://doi.org/10.1007/BF02289400
http://doi.org/10.1177/0013164415593776

THE CLINICAL NEUROPSYCHOLOGIST . 1125

Puente, A. E., & Puente, A. N. (2013). Assessment of neuropsychological functioning. In K. F. Geisinger
(Ed.), APA handbook of testing and assessment in psychology: Testing and assessment in clinical and
counseling psychology (Vol. 2, pp. 133-152). Washington, DC: American Psychological Association.

R Development Core Team. (2016). R: A language and environment for statistical computing. Retrieved
from http://www.R-project.org/

Rabin, L. A., Paolillo, E., & Barr, W. B. (2016). Stability in test-usage practices of clinical neuropsychologists
in the United States and Canada over a 10-year period: A follow-up survey of INS and NAN members.
Archives of Clinical Neuropsychology, 31, 206-230. doi:10.1093/arclin/acw007

Raykov, T. (1997). Scale reliability, Cronbach’s coefficient alpha, and violations of essential tau-
equivalence with fixed congeneric components. Multivariate Behavioral Research, 32, 329-353.
doi:10.1207/515327906mbr3204_2

Raykov, T. (2001a). Bias of coefficient a for fixed congeneric measures with correlated errors. Applied
Psychological Measurement, 25, 69-76. doi:10.1177/01466216010251005

Raykov, T. (2001b). Estimation of congeneric scale reliability using covariance structure
analysis with nonlinear constraints. British Journal of Statistical Psychology, 54, 315-323.
doi:10.1348/000711001159582

Raykov, T. (2002). Analytic estimation of standard error and confidence interval for scale reliability.
Multivariate Behavioral Research, 37, 89-103.

Raykov, T., & Zinbarg, R. E. (2011). Proportion of general factor variance in a hierarchical multi-
component measuring instrument: A note on a confidence interval estimation procedure. British
Journal of Mathematical and Statistical Psychology, 64, 193-207. doi:10.1348/000711009X479714

Reise, S. P. (2012). The rediscovery of bifactor measurement models. Multivariate Behavioral Research,
47,667-696. doi:10.1080/00273171.2012.715555

Reise, S. P, Bonifay, W. E., & Haviland, M. G. (2013). Scoring and modeling psychological measures in
the presence of multidimensionality. Journal of Personality Assessment, 95, 129-140. doi:10.1080/0
0223891.2012.725437

Revelle, W. (2016). An introduction to psychometric theory with applications in R. Retrieved from http://
personality-project.org/r/book/

Reynolds, M. R., Ingram, P.B., Seeley, J.S., & Newby, K. D. (2013). Investigating the structure and invariance
of the Wechsler Adult Intelligence Scales, Fourth Edition in a sample of adults with intellectual
disabilities. Research in Developmental Disabilities, 34, 3235-3245. doi:10.1016/j.ridd.2013.06.029

Rodriguez, A., Reise, S. P, & Haviland, M. G. (2016a). Applying bifactor statistical indices in the evaluation
of psychological measures. Journal of Personality Assessment, 98, 223-237. doi:10.1080/00223891
.2015.1089249f

Rodriguez, A., Reise, S. P, & Haviland, M. G. (2016b). Evaluating bifactor models: Calculating and
interpreting statistical indices. Psychological Methods, 21, 137-150. doi:10.1037/met0000045

Salvia, J., Ysseldyke, J. E., & Bolt, S. (2010). Assessment in special and inclusive education (11th ed.).
Belmont, CA: Wadsworth.

Sattler, J. M., &Ryan, J. J. (2009). Assessment with the WAIS-IV. San Diego, CA: Jerome M. Sattler.

Schmid, J., & Leiman, J. M. (1957). The development of hierarchical factor solutions. Psychometrika, 22,
53-61.doi:10.1007/BF02289209

Schweizer, K. (2011). On the changing role of Cronbach’s a in the evaluation of the quality of a measure.
European Journal of Psychological Assessment, 27, 143-144. doi:10.1027/1015-5759/a000069

Sijtsma, K. (2009). On the use, the misuse, and the very limited usefulness of Cronbach’s alpha.
Psychometrika, 74, 107-120. doi:10.1007/5S11336-008-9101-0

Silver, C.H., Ruff,R.M., Iverson, G. L., Barth, J.T,, Broshek, D.K., Bush, S.S., ... Reynolds, C.R. (2008). Learning
disabilities: The need for neuropsychological evaluation. Archives of Clinical Neuropsychology, 23,
217-219. doi:10.1016/j.acn.2007.09.006

Simsek, G. G., & Noyan, F. (2013). McDonald’s wt, Cronbach’s a, and generalized 6 for composite reliability
of common factors structures. Communications in Statistics-Simulation and Computation, 42, 2008—
2025. doi:10.1080/03610918.2012.689062

Streiner, D. L. (2003). Starting at the beginning: An introduction to coefficient alpha and internal
consistency. Journal of Personality Assessment, 80, 99-103. doi:10.1207/515327752JPA8001_18


http://www.R-project.org/
http://doi.org/10.1093/arclin/acw007
http://doi.org/10.1207/s15327906mbr3204_2
http://doi.org/10.1177/01466216010251005
http://doi.org/10.1348/000711001159582
http://doi.org/10.1348/000711009X479714
http://doi.org/10.1080/00273171.2012.715555
http://doi.org/10.1080/00223891.2012.725437
http://doi.org/10.1080/00223891.2012.725437
http://personality-project.org/r/book/
http://personality-project.org/r/book/
http://doi.org/10.1016/j.ridd.2013.06.029
http://doi.org/10.1080/00223891.2015.1089249f
http://doi.org/10.1080/00223891.2015.1089249f
http://doi.org/10.1037/met0000045
http://doi.org/10.1007/BF02289209
http://doi.org/10.1027/1015-5759/a000069
http://doi.org/10.1007/S11336-008-9101-0
http://doi.org/10.1016/j.acn.2007.09.006
http://doi.org/10.1080/03610918.2012.689062
http://doi.org/10.1207/S15327752JPA8001_18

1126 M. W. WATKINS

Strickland, T., Watkins, M. W., & Caterino, L. C. (2015). Structure of the Woodcock-Johnson Il cognitive
tests in a referral sample of elementary school students. Psychological Assessment, 27, 689-697.
doi:10.1037/pas0000052

Thorndike, R. M., & Thorndike-Christ, T. (2010). Measurement and evaluation in psychology and education
(8th ed.). New York, NY: Pearson.

Watkins, M. W. (2013). Omega [Computer Software]. Phoenix, AZ: Ed & Psych Associates.

Watkins, M.W., & Beaujean, A. A. (2014). Bifactor structure of the Wechsler Preschool and Primary Scale
of Intelligence-Fourth Edition. School Psychology Quarterly, 29, 52-63. doi:10.1037/spq0000038
Wechsler, D. (2008a). Wechsler Adult Intelligence Scale-Fourth Edition. San Antonio, TX: Pearson

Assessment.

Wechsler, D. (2008b). WAIS-IV technical and interpretive manual. San Antonio, TX: Pearson Assessment.

Weiner, I. B. (1989). On competence and ethicality in psychodiagnostic assessment. Journal of Personality
Assessment, 53,827-831.

Youngstrom, E. A, & Frazier, T. W. (2013). Strategies for evidence-based assessment of children and
adolescents: Measuring prediction, prescription, and process. In W. E. Craighead, D. J. Miklowitz,
& L. W. Craighead (Eds.), Psychopathology: History, diagnosis, and empirical foundations (2nd ed.,
pp. 36-79). Hoboken, NJ: Wiley.

Zhang, Z., & Yuan, K.-H. (2016). Robust coefficients alpha and omega and confidence intervals with
outlying observations and missing data: Methods and software. Educational and Psychological
Measurement, 76,387-411.d0i:10.1177/0013164415594658

Zinbarg, R. E., Revelle, W,, Yovel, |, & Li, W. (2005). Cronbach’s a, Revelle’s 3, and Mcdonald'’s w, : Their
relations with each other and two alternative conceptualizations of reliability. Psychometrika, 70,
123-133. doi:10.1007/511336-003-0974-7

Zinbarg, R. E., Yovel, |, Revelle, W., & McDonald, R. P. (2006). Estimating generalizability to a latent
variable common to all of a scale’s indicators: A comparison of estimators for w, . Applied Psychological
Measurement, 30, 121-144. doi:10.1177/014662160527881


http://doi.org/10.1037/pas0000052
http://doi.org/10.1037/spq0000038
http://doi.org/10.1177/0013164415594658
http://doi.org/10.1007/s11336-003-0974-7
http://doi.org/10.1177/014662160527881

	Abstract
	Method
	Participants
	Instruments
	Analyses

	Results
	Discussion
	Limitations
	Conclusion

	Notes
	Disclosure statement
	References



