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Previous confirmatory factor analytic research that has examined the factor struc-
ture of the Wechsler Adult Intelligence Scale—Fourth Edition (WAIS-IV) has en-
dorsed either higher order models or oblique factor models that tend to amalgamate
both general factor and index factor sources of systematic variance. An alternative
model that has not yet been examined for the WAIS-IV is the bifactor model.
Bifactor models allow all subtests to load onto both the general factor and their
respective index factor directly. Bifactor models are also particularly amenable
to the estimation of model-based reliabilities for both global composite scores
(wy,) and subscale/index scores (wy). Based on the WAIS-IV normative sample
correlation matrices, a bifactor model that did not include any index factor cross
loadings or correlated residuals was found to be better fitting than the conventional
higher order and oblique factor models. Although the w;, estimate associated with
the full scale intelligence quotient (FSIQ) scores was respectably high (.86), the
w; estimates associated with the WAIS-IV index scores were very low (.13 to .47).
The results are interpreted in the context of the benefits of a bifactor modeling
approach. Additionally, in light of the very low levels of unique internal consistency
reliabilities associated with the index scores, it is contended that clinical index
score interpretations are probably not justifiable.
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Since the publication of the Wechsler Adult Intelligence Scale—Fourth Edition
(WAIS-1V; Wechsler, 2008a), several studies have sought to extend the confir-
matory factor analyses reported in the WAIS-IV technical manual (Wechsler,
2008b). Based on a series of competing models (i.e., higher order, oblique,
Cattell-Horn-Carroll [CHC]) some convergence on a CHC interpretation of the
WAIS-IV intersubtest covariation appears to be warranted (Benson, Hulac, &
Kranzler, 2010; Ward, Bergman, & Hebert, 2011). However, one model that has
yet to be tested for the WAIS-IV is the bifactor model (aka nested factor model,
direct hierarchical model), which has been found to be a superior fitting model
when tested on previous editions of the Wechsler scales (Gignac, 2005, 2006a).
Furthermore, model-based estimates of reliability can be applied insightfully
to bifactor models as they represent the amount of unique internal consistency
reliability associated with both the general composite scores (e.g., full scale
intelligence quotient [FSIQ]) and the narrower composite scores (e.g., index
scores). Thus, the purpose of this article is to test the plausibility of a WAIS-IV
index bifactor model as well as estimate the model-based reliabilities associated
with the FSIQ and index composite scores.

PAST EMPIRICAL RESEARCH

The WAIS-IV consists of 15 subtests (10 core and 5 supplemental) designed
to measure four positively intercorrelated indices: Verbal Comprehension (VC),
Perceptual Reasoning (PR), Working Memory (WM), and Processing Speed
(PS). As the four indices are positively intercorrelated, they can be used to form
total scale scores (FSIQ; Wechsler, 2008b). To evaluate the factorial validity
associated with the WAIS-IV, Wechsler (2008b) tested a series of competing
models, including a higher order model (one second-order general factor and four
first-order index factors; see Rindskopf & Rose, 1988, for a full description of a
higher order model) and a corresponding oblique four-factor model (Wechsler,
2008b). The higher order model was endorsed by Wechsler (2008b), but it
allowed two subtests to have interindex cross loadings (Arithmetic and Figure
Weights) and also included correlated residual error terms between the Digit
Span and Letter-Number Sequencing subtests. Thus, it may be suggested that
the endorsed model was not associated with as simple a structure as would be
desired (Bowen & Guo, 2012).

Benson et al. (2010) performed a series of confirmatory factor analyses (CFA)
on portions of the WAIS-IV normative sample to evaluate the CHC (McGrew,
1997) as an alternative to the WAIS-IV index model. The main distinctions
between the WAIS-IV index model and the CHC model tested in Benson et al.
is that the PR index factor was split into two factors: Visual Processing (Gv)
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and Fluid Reasoning (G ). Additionally, the Arithmetic subtest was specified to
load onto the G f factor rather than a memory factor as per the WAIS-IV index
model (Wechsler, 2008b). Based on Benson et al.’s calibration sample analyses
(N = 800), evidence in favor of a CHC model interpretation was reported, as
the higher order CHC model was associated with a lower Akaike Information
Criterion (AIC; Akaike, 1973) value (382.70) in comparison with the higher
order WAIS index model AIC value (499.52).

However, the CHC higher order model endorsed by Benson et al. (2010)
is arguably of questionable interpretative value because one of the lower order
factors appeared to be associated with a possible Heywood case. That is, the G f
factor was reported by Benson et al. to be associated with a higher order loading
equal to 1.00. Thus, there is reason to question the plausibility of the higher order
CHC model endorsed by Benson et al. as it may be overparameterized (Joreskog
& Sorbom, 1989).

Finally, Ward et al. (2011) examined via CFA the WAIS-IV from the perspec-
tive of the CHC model. However, they specified the Arithmetic subtest to have
a cross loading on the G f and Gec first-order factors. Additionally, Ward et al.
applied an oblique factor modeling strategy, rather than a higher order modeling
strategy, as they contended that an oblique factor model was associated with
superior model fit in comparison with the Benson et al. (2010) endorsed higher
order model. Additionally, an oblique factor modeling strategy overcomes the
potential problem of a Heywood case as arguably observed within the Benson
et al. endorsed higher order CHC model. However, a problem with the oblique
factor model endorsed by Ward et al. is that it does not specify a general
factor of intelligence, which is inconsistent with the overwhelming amount
of empirical research in the area (Carroll, 1993) and “central to the Wechsler
and other models of intelligence” (Wechsler, 2008b, p. 66). Additionally, the
observation or incorporation of cross loadings within a factor model may be
considered problematic and should be avoided if possible, as they complicate
the interpretation of the corresponding composite scores (Bowen & Guo, 2012;
Costello & Osborne, 2005).

One model that has yet to be tested for on the WAIS-IV is the bifactor model
(Gustafsson & Balke, 1993; Holzinger & Swineford, 1937). Based on both
the WAIS-R (Wechsler, 1981) and the WAIS-III (Wechsler, 1997) normative
sample correlation matrices, Gignac (2005, 2006a) found the bifactor model
to be associated with superior model fit in comparison with higher order and
oblique factor models. However, Gignac (2005, 2006a) did not estimate the
unique model-based reliabilities associated with the FSIQ scores or the index
scores. Thus, we considered there to be compelling support for (a) testing a
bifactor model on the WAIS-IV normative sample and (b) estimating the unique
model-based internal consistency reliabilities associated with the FSIQ and index
composites scores.
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BIFACTOR MODEL

A bifactor model (aka nested factor model or direct hierarchical model) consists
of one first-order general factor and one or more usually orthogonal, first-order
factors nested within the general factor (Gustafsson & Balke, 1993; Holzinger
& Swineford, 1937). In a typical bifactor model, each indicator is specified
to load on the general factor directly and on one nested factor directly (see
Model 3, Figure 1, of this article for a visual representation). However, cross
loadings between nested factors can be specified as well. Additionally, there are
theoretically interesting bifactor models that include indicators specified to load
onto more than two orthogonal latent variables. For example, Gignac (2010)
tested a bifactor model on a self-report emotional intelligence questionnaire
whereby the negatively keyed items were specified to load onto the general
factor, one domain-specific factor, and a negatively keyed item factor.

Bifactor model solutions can be estimated within both exploratory factor-
analytic and confirmatory factor-analytic frameworks (Jennrich & Bentler, 2011;
Reise, 2012). This article’s focus is on bifactor models estimated within a
confirmatory factor-analytic framework. It is important to note that a bifactor
model solution is not necessarily the same as a Schmid-Leiman transformation
(Schmid & Leiman, 1957) of a higher order model solution (Chen, West, &
Sousa, 2006). When a generalized Schmid-Leiman transformation is applied to a
higher order model solution (i.e., when proportionality constraints are imposed),
meaningful interpretive differences can emerge between bifactor model solutions
and Schmid-Leiman transformed higher order model solutions (e.g., Chen et al.,
2006; Gignac, 2007a).

Although the bifactor model of intelligence within a confirmatory factor-
analytic framework was introduced approximately 20 years ago (Gustafsson
& Balke, 1993), it would probably be accurate to suggest that it has not yet
been accepted to any appreciable degree (Gustafsson & Aberg-Bengtsson, 2010).
For example, Keith (2005) found the bifactor model to be a superior fitting
model for the Wechsler Intelligence Scale for Children—Fourth Edition (WISC-
IV; Wechsler, 2003) normative sample but endorsed the higher order model on
the grounds that the bifactor model “does not test an actual hierarchical model”
(p- 594) and that it “is not consistent with any modern theoretical orientation”
(p- 594).

However, as contended by Gignac (2008), the term hierarchical model used
by early factor analysts such as Humphreys (1962) was used in the context
of a completely first-order factor solution, not a higher order model solution.
That is, the term hierarchical model is used to represent a model in which
factors can be ranked by the number of subtests that define them. In the context
of intelligence testing, the general factor has the greatest breadth, whereas the
group-level factors have lesser levels of breadth. In this sense, the bifactor model
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Model 1

FIGURE 1 Series of competing models tested in this investigation; Model 1 = higher order
WAIS-IV index factor model; Model 2 = oblique factor WAIS-IV index factor model; Model
3 = bifactor WAIS-IV index factor model; g = general factor; VC = Verbal Comprehension;
PR = Perceptual Reasoning; WM = Working Memory; PS = Processing Speed; SI =
Similarities; VC = Vocabulary; IN = Information; CO = Comprehension; BD = Block
Design; MR = Matrix Reasoning; VP = Visual Puzzles; FW = Figure Weights; PCm =
Picture Completion; DS = Digit Span; AR = Arithmetic; LN = Letter-Number Sequencing;
SS = Symbol Search; CD = Coding; CA = Cancellation.
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is in fact hierarchical. Higher order models, by contrast, emphasize differences
between factors based on superordination (Gignac, 2008).

In addition to theoretical reservations, Keith (2005) contended that the ob-
served superior fit associated with the WISC-IV bifactor model should probably
be viewed as unusual. However, a nonnegligible amount of empirical research
suggests that the observation of a superior fitting bifactor model is not unusual.
In fact, a bifactor model has been shown to be associated with significant
improvements in model fit over competing higher order models on both the
WAIS-R and the WAIS-III normative sample intersubtest correlation matrices
(Gignac, 2005, 2006a; Golay & Lecerf, 2011). For instance, Gignac (2005)
estimated the model fit associated with a series of higher order and bifactor
models for the WAIS-R normative sample. In one case, a conventional higher
order model with one general factor and two lower order factors (verbal intel-
ligence quotient [VIQ] and performance intelligence quotient [PIQ]) was tested
against the corresponding bifactor model with one lower order general factor
and two nested group-level factors (VIQ and PIQ). Gignac (2005) found that
the bifactor model was associated with a Tucker-Lewis Index (TLI) = .973,
which was considered a substantial improvement over the corresponding higher
order model (TLI = .931).

The bifactor model results reported in Gignac (2005) also had practical
implications. In particular, based on the bifactor model, the Arithmetic subtest
was found not to contribute any statistically significant variance to the nested
VIQ factor. By contrast, the corresponding higher order model failed to suggest
that Arithmetic was not a valid indicator of VIQ. This was considered an
important observation as the WAIS-R scoring guidelines specified the Arithmetic
subtest as one of the six defining VIQ subtests (Wechsler, 1981).

In another investigation, Gignac (2006a) evaluated competing higher order
and bifactor models based on the WAIS-III normative sample correlation ma-
trices. Based on the total sample correlation matrix (N = 2,450), the CFA
results largely favored a bifactor model interpretation. Specifically, the higher
order index model endorsed by Wechsler (1997) was associated with a TLI =
959, whereas the corresponding bifactor model was associated with a TLI =
.966. Perhaps more important, the bifactor model results did not suggest that the
Arithmetic subtest should be considered a unique indicator of VIQ, as per Gignac
(2005). Furthermore, another bifactor model tested by Gignac (2006a) found the
Arithmetic subtest to be a negligible indicator (.16) of the WM index factor.
Thus, the results associated with the bifactor modeling strategy had possible
practical implications relevant to how the WAIS-III should be scored. That is,
arguably, Arithmetic should probably not be included within a VIQ or WM
index.

The results in support of a bifactor model interpretation of the Wechsler scales
reported in Gignac (2005, 2006a) have been replicated on the French and Spanish
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versions of the WAIS-III (Golay & Lecerf, 2011; Molenaar, Dolan, & van der
Maas, 2011). Additionally, the model fit superiority associated with WISC-IV
observed by Keith (2005) has been replicated on a sample of 355 students
referred for psychoeducational examination (Watkins, 2010). Furthermore, the
Wechsler scales are not the only intelligence test batteries to have been shown
to correspond more closely to a bifactor model. Others include the Multidimen-
sional Aptitude Battery (MAB; Gignac, 2006b), the Berlin Intelligence Structure
Test (BIS; Brunner & Siif3, 2005), and the Swedish Enlistment Battery (Mardberg
& Carlstedt, 1998). Thus, in light of the nonnegligible amount of research
endorsing a bifactor model of the Wechsler scales specifically, and intelligence
test batteries more generally, it was considered useful to test the plausibility of
a bifactor model for the WAIS-IV normative sample data.

MODEL-BASED INTERNAL CONSISTENCY
RELIABILITY

Coefficient o is arguably the most common method used to estimate the internal
consistency reliability of test scores (Peterson, 1994). Coefficient o is known as
the ratio of true score variance to total variance (Lord & Novick, 1968). As per
Cortina (1993), coefficient o may be formulated as

k* % cov
0= = (D)

> 82, cov
where kK = number of indicators associated with the scale, COV = mean
interindicator covariance, and Y S?> COV = the sum of the square vari-

ance/covariance matrix (i.e., composite score variance). Despite coefficient o’s
popularity, a number of papers have been published that highlight its limitations
(e.g., Green & Yang, 2009; Schmitt, 1996; Sijtsma, 2009). Most pertinent to this
article is the limitation that coefficient a will tend to conflate multiple sources
of systematic variance when the data are associated with a multidimensional
model (Lucke, 2005; Zinbarg, Revelle, Yovel, & Li, 2005).

An alternative approach to the estimation of internal consistency reliability
is known as model-based internal consistency reliability (Bentler, 2009; Miller,
1995). There are now several forms of model-based internal consistency relia-
bility, including @ (McDonald, 1985), w;, (Zinbarg et al., 2005), and w; (Reise,
Bonifay, & Haviland, 2012). In this article, the focus is on w; and ;.

Coefficient wj, represents the unique internal consistency reliability associated
with total scale composite scores (Zinbarg et al., 2005). Coefficient w; may be
regarded as unique as it is applied to bifactor model solutions that represent the
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global factor as orthogonal to any nested factors. Thus, the true score variance
associated with the global factor is independent of the true score variance
associated with the nested factors. Consistent with Zinbarg et al. (2005) and
Reise et al. (2012), w;, may be formulated as

wp = )

Zk: ng)

i=1

k 2 51 2 52 2 p 2 4
Z )»g,.) + Z x‘”‘) + ZX“Q") +...t Z xsm) + Z(l = hlz)

i=1 i=1 i=1 i=1 i=1

2

where A, corresponds to the general factor loadings; Ay, As2 ... Ay, correspond
to the nested factor (or subscale) factor loadings; and (1 — h?) represents an
indicator’s unique variance (i.e., error). The denominator of Equation (2) corre-
sponds to the total variance associated with the total scale’s composite scores.

In contrast to w;, w; represents the amount of unique internal consistency
reliability associated with subscale scores (Reise et al., 2012). Coefficient w; may
be regarded as unique, as it is applied to bifactor model solutions that represent
each nested factor as orthogonal to the general factor as well as (typically)
orthogonal to any other nested factors. Thus, the true score variance associated
with each nested factor is independent of the true score variance associated with
any other nested factors and the global factor. Coefficient w; may be formulated
as

51 2
>
i=l1 . - (3)
+y (A =h)

i=1

Wy =

B s1 2 s1
ngi) + szli)

i=l1 i=l1

where all of the terms are defined as per Equation (2) with the exception that
the elements are summed only for those indicators associated with a particular
nested factor (in the aforementioned formula, s1 = subscale 1). The denominator
of Equation (3) corresponds to the total variance associated with the subscale’s
composite scores.

Unlike coefficient o, model-based reliability estimates, such as the various w
coefficients, do not assume essential tau equivalence (Graham, 2006). Therefore,
they tend not to be lower bound estimates of internal consistency reliability. An-
other advantage associated with model-based reliability is that it can be relatively
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easily applied to the bifactor model case, using either a formulation approach
(Revelle, 2012; Zinbarg et al., 2005) or an approach based on the implied
correlation between a phantom variable and its corresponding latent variable
(Fan, 2003; Raykov, 1997). Furthermore, as the bifactor model specifies factors
that are orthogonal to each other, each model-based reliability estimate may
be considered the estimate of unique internal consistency reliability associated
with each respective scale or subscale. That is, in the case of the Wechsler
scales, conventional approaches (e.g., coefficient a) to the estimation of internal
consistency reliability of index scores (e.g., Verbal Comprehension) fail to reflect
the fact that an index’s reliable variance is derived from two principal sources:
g and the corresponding group-level factor.

To our knowledge, there are only three published studies that have estimated
both w;, and wy. In the first, Brunner and Siiff (2005) estimated a bifactor model
solution on a sample of 657 adults who completed the BIS (Jager, Sii}, &
Beauducel, 1997). The bifactor model consisted of one first-order general factor
and seven nested group-level factors. Based on wj, the global index score (i.e.,
FSIQ) reliability was estimated to be .68, which was substantially lower than the
original, conflated reliability estimate of .93 (i.e., coefficient o). Furthermore, the
subscales were found to be associated with a mean w; equal to .31, which was
also substantially lower than the mean of the original coefficient a reliabilities
of .84. Thus, in both the total score and index score cases, the conventional
approach to estimating internal consistency reliability via coefficient o, which
imbues multiple sources of reliable variance, yielded substantial overestimates
of internal consistency reliability.

In the second application of model-based w;, and w;, Gignac, Palmer, and
Stough (2007) investigated the factor structure of the self-report Toronto Alex-
ithymia Scale (TAS-20; Bagby, Parker, & Taylor, 1994). Based on a sample
of 363 respondents, Gignac, Palmer, et al. reported w; values of .56, .31, and
42 for the three TAS-20 subscales, which were all substantially lower than the
original internal consistency reliability estimates (i.e., > .70). However, with
respect to the total scale scores, Gignac, Palmer, et al. reported comparable
w;, and coefficient o values (.84, and .86, respectively). Thus, Gignac, Palmer,
et al. found very low levels of internal consistency reliability unique to each
subscale, as was observed in Brunner and Siil (2005). However, in contrast to
Brunner and Siif3, the TAS-20 total scores were found to be associated with an
acceptable level of unique internal consistency reliability based on conventional
standards (Nunnally & Bernstein, 1994). Finally, based on another bifactor model
investigation of the TAS-20, (N = 1,612 college students), Reise et al. (2012)
reported w, and w; results very similar to those reported in Gignac, Palmer,
et al.

In light of the results reported in Brunner and Sii3 (2005); Gignac, Palmer,
et al. (2007); and Reise et al. (2012), it was considered important to estimate
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model-based reliability (i.e., w; and w) for one of the most well-known and
commonly used psychological inventories: the WAIS-IV. It was hypothesized
that the WAIS-IV subscales would be found to be associated with very low
levels of unique internal consistency reliability as estimated via w,. Additionally,
it was hypothesized that there would be some level of reduction in the internal
consistency reliability estimation of the FSIQ scores as estimated via w; in
comparison with the conventional application of coefficient a.

METHOD

Sample

All data analyses were based on the nine normative sample subtest correlation
matrices published in the WAIS-1V Technical and Interpretative Manual (Tables
A.1-A.9; Wechsler, 2008b). The WAIS-IV normative sample was obtained based
on a stratified sampling strategy to reflect the U.S. census results relevant
to gender, age, race/ethnicity, education, and geographic location (Wechsler,
2008b). As per Ward et al. (2011), the nine correlation matrices were combined
to form four correlation matrices using a Fisher’s z transformation and back-
transformation procedure. Specifically, the ages 16—-17 and 18-19 correlation
matrices were combined to form a 16-19 correlation matrix (N = 400). The
ages 20-24, 25-29, and 30-34 correlation matrices were combined to form
a 20-34 correlation matrix (N = 600). The ages 35-44 and 45-54 correlation
matrices were combined to form a 35-54 correlation matrix (N = 400). Finally,
the ages 55-64 and 65-69 correlation matrices were combined to form a 55-69
correlation matrix (N = 400).

Data-Analytic Strategy

All confirmatory factor analyses (CFA) were performed with Amos 19.0 using
maximum likelihood estimation (MLE). A series of four competing models were
tested in this investigation (see Figure 1). Model 1 was the conventional higher
order model with four first-order factors (VC, PR, WM, and PS) and one second-
order general factor. Model 2 was the corresponding oblique factor model with
the same four first-order factors that were specified in the aforementioned higher
order model. Model 3 was the corresponding bifactor model, which allowed
each subtest to load simultaneously onto the general factor directly and its
corresponding index factor directly. Finally, Model 4 (not shown in Figure 1) was
the CHC model endorsed by Benson et al. (2010) represented as a bifactor model.
The main distinction between the CHC model and the WAIS-IV index factor
model was that the PR factor was split into two factors: Spatial Visualization
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(Gv) and Perceptual Reasoning (G f). Additionally, the Arithmetic subtest was
allowed to load onto both the G f and Gsm factors.!

The higher order model solutions were subjected to a generalized Schmid-
Leiman (S-L) transformation (Schmid & Leiman, 1957). Humphreys (1962) and
others have argued that higher order model solutions should be S-L transformed to
allow for clearer interpretations of the factor solution. S-L solutions also allow for
more direct comparisons with corresponding bifactor solutions, as S-L coefficients
represent the unique effects between indicators and latent variables. The S-L
solutions were obtained via a simple multiplication procedure based on the path-
tracing rule (Mulaik & Quartetti, 1997). Specifically, each subtest’s first-order
factor loading was multiplied by its corresponding first-order factor’s second-
order factor loading, which yielded the indirect g factor loadings. Additionally,
each subtest’s first-order factor loading was also multiplied by its correspond-
ing first-order factor variable’s residual variance standardized regression weight,
which yielded the indirect group-level loadings (see Gignac, 2007a, for a detailed
demonstration of how to obtain an S-L solution within the context of a CFA).

As the MLE chi-square associated with an SEM model has been argued to
be excessively influenced by sample size (Joreskog, 1993), the level of model fit
associated with each model was evaluated based on a series of close-fit indices
(aka. descriptive goodness-of-fit statistics). However, the chi-square values asso-
ciated with all models (including null models) are reported for thoroughness. In
choosing a series of close-fit indices, greater emphasis was placed on selecting
close-fit indices that are known to include relatively greater penalties for model
complexity, as an evaluation of the competing bifactor model was a goal of the
investigation. Consequently, the commonly reported Standardized Root Mean
Square Residual (Bentler, 1995) and Comparative Fit Index (Bentler, 1990),
indices were not considered in this investigation, as the former does not include
any penalty for model complexity and the latter only a weak one (Marsh, Hau,
& Grayson, 2005).

Instead, the fit indices reported in this investigation included the root mean
square error of approximation (RMSEA; Steiger & Lind, 1980), the Tucker-
Lewis Index (TLI; Tucker & Lewis, 1973), the AIC (Akaike, 1973), and the
Bayesian Information Criterion (BIC; Schwarz, 1978). RMSEA is an absolute
close-fit indicator of model fit, with lower values indicative of superior model
fit. Based on MacCallum, Browne, and Sugawara (1996), RSMEA values of
.01, .05, and .08 were considered indicative of excellent, good, and mediocre fit,
respectively. In contrast to the RMSEA, the TLI is considered an incremental

I'Ward et al. (2011) allowed the Arithmetic subtest to load onto a third group-level factor,
Crystallized Intelligence (Gc). However, given the results of Gignac (2005, 2006a), it was considered
unlikely that Arithmetic would exhibit a loading onto a nested Gc factor as modeled within a bifactor
modeling strategy.



650  GIGNAC AND WATKINS

fit indicator of model fit, which implies that both the null model and implied
model chi-square values are used in its formulation (Marsh, Balla, & Hau, 1996).
Larger values of TLI are indicative of superior model fit, with values equal to
or greater than .95 indicative of good model fit (Hu & Bentler, 1999).

There are no guidelines for interpreting individual AIC and BIC values
(Schermelleh-Engel, Moosbrugger, & Miiller, 2003); however, in an absolute
sense, smaller AIC and BIC values are indicative of superior evidence for the
plausibility of a model. Within the context of evaluating competing models,
Raftery (1995) suggested ABIC values of 0 to —2, —2 to —6, —6 to —10,
and > —10 to correspond to “weak,” “positive,” “strong,” and ‘“very strong”
indications of superior model fit, respectively.

Finally, in addition to evaluating the plausibility of each of the four compet-
ing models, the respective model-based reliability (i.e., w; and w;) estimates
associated with the FSIQ and the index scores were estimated. Although a
formulation approach is typically used in this context, for the purposes of
efficiency, in this investigation, model-based reliability was estimated based on
the implied correlation (squared) between a “phantom” composite variable and
its corresponding latent variable (Fan, 2003; Raykov, 1997). In the context of
this investigation, a phantom composite variable within a latent variable model
is simply a representation of an equally weighted composite score (see Gignac,
2007b, for graphical representation of a phantom variable in Amos). It does not
affect the level of model fit associated with the model; nor does it impact the
parameter estimates (e.g., factor loadings). When squared, the implied correlation
between a phantom variable and its corresponding latent variable represents the
internal consistency reliability associated with the composite scores (Fan, 2003;
Raykov, 1997). As applied to a bifactor model, in the context of this investiga-
tion, the implied squared correlation between the FSIQ phantom variable and the
general factor latent variable is equal to wj. Similarly, as applied to the bifactor
model, the implied squared correlation between an index phantom variable and
its corresponding group-level factor latent variable is equal to w,. For the
purposes of comparison, the internal consistency reliabilities associated with
the FSIQ and index scores were estimated via coefficient o (SPSS 19.0). As per
Gignac, Bates, and Jang (2007), a difference of .06 or greater between coefficient
alpha and coefficient omega was considered a practically significant difference.

RESULTS

Confirmatory Factor Analyses

As can be seen in Table 1, across all four samples, the higher order and oblique
factor models tended to be associated with levels of model close-fit, which
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TABLE 1
Model Fit Statistics and Close-Fit Indices Associated With the CFA Models: WAIS-IV Core
and Supplemental Subtests

RMSEA
Model ¥2 df (90% CI) AIC (90% CI) TLI BIC
Ages: 16-19
0: Null 3,025.64 105 .264 (.256/.272) 3,055.64 (2880.12/3239.14) .000 3,115.5
1: Higher-O. 246.75 86 .068 (.059/.079) 314.75 (271.66/365.41) 933 450.46
2: Oblique 23837 84 .068 (.058/.078) 310.37 (268.08/360.24) 934 454.07
3: Bi-WAIS 14728 75 .049 (.037/.061) 237.28 (206.57/275.56) 965 416.90
4: Bi-CHC 150.16 74 .051 (.039/.062) 242.16 (211.04/281.26) 963 425.77
Ages: 20-34
0: Null 5,331.53 105 .288 (.282/.295) 5,361.53 (5127.90/5607.14) .000 5,427.5
1: Higher-O. 298.51 86 .064 (.056/.072) 366.51 (317.40/422.80) 950 516.00
2: Oblique 290.02 84 .064 (.056/.072) 362.02 (314.07/417.76) 951 520.31
3: Bi-WAIS 19721 75 .052 (.043/.061) 287.21 (249.43/332.78) 967 485.07
4: Bi-CHC 200.62 74 .053 (.045/.062) 292.62 (254.32/340.49) 966 494.87
Ages: 35-54
0: Null 3,487.69 105 .284 (.276/.292) 3,517.69 (3326.25/3713.12) .000 3,577.6
1: Higher-O. 279.28 86 .075 (.065/.085) 347.28 (300.58/403.16) 930 482.99
2: Oblique 271.57 84 .075 (.065/.085) 343.57 (297.68/397.44) 931 487.27
3: Bi-WAIS 160.43 75 .053 (.042/.065) 250.43 (217.73/290.71) 965 430.04
4: Bi-CHC 172.03 74 .058 (.046/.069) 264.03 (229.33/.305.91) 959 447.63
Ages: 55-69
0: Null 3,740.42 105 .295 (.287/.303) 3,770.42 (3574.92/3973.90) .000 3,830.3
1: Higher-O. 27393 86 .074 (.064/.084) 342.93 (296.51/396.95) 937 477.64
2: Oblique 252.69 84 .071 (.061/.081) 324.69 (280.81/376.15) 942 468.38
3: Bi-WAIS 19495 75 .063 (.052/.074) 284.95 (247.44/330.05) 954 464.57
4: Bi-CHC 20731 74 .067 (.056/.078) 299.31 (260.20/.346.00) 948 482.92
Note. Model 0 = null model (df = 105); Model 0 = null model; Model 1 = higher order

WAIS-IV index model; Model 2 = oblique factor WAIS-IV index model; Model 3 = bifactor WAIS-
1V index model; Model 4 = bifactor CHC model; AIC = Akaike Information Criterion; NAIC =
Normed Akaike Information Criterion; RMSEA = Root Mean Square Error of Approximation;
TLI = Tucker-Lewis Index; Ages 16-19 (N = 400), Ages 20-34 (N = 600), Ages 35-54 (N =
400), Ages 55-69 (N = 400).

were not quite acceptable (i.e., TLI < .93; factor loadings and latent variable
correlations available upon request). In contrast to the oblique and higher order
models, the bifactor model (Model 3) was associated with good levels of model
close-fit across all four samples. Furthermore, across all four samples, the
bifactor model was found to be better fitting than the corresponding higher
order factor model (e.g., ages 20-34: AAIC = —79.3, ABIC = —30.9) and the
oblique factor model (e.g., ages 20-34: AAIC = —74.8, ABIC = —35.2). Thus,
based on Raftery’s (1995) guidelines, the bifactor model (Model 3) was found
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to be associated with very strong evidence of favorability over the competing
higher order and oblique factor models.

It is noteworthy that there were some important differences between the
bifactor model solutions and the S-L solutions derived from the higher order
model (see Table 2). The most consequential differences were observed with
respect to the WM latent variable. Specifically, the S-L solution suggested
equally sized, positive, and acceptably large factor loadings (.35) across all
three specified WM subtests. By contrast, in the ages 55-69 sample, the bifactor
model solution suggested the implausibility of a nested WM latent variable, as
none of the factor loadings were statistically significant. Furthermore, across the
remaining three samples, the Arithmetic subtest tended to be associated with
weak and/or nonsignificant loadings on the nested WM latent variable (e.g.,
ages 20-34: .08, p = .08).

Another noteworthy difference that emerged between the S-L transformed
and bifactor model solutions was relevant to the PR latent variable. Specifically,
as can be seen in Table 2, all five of the specified PR subtests tended to
load approximately equally (.28 to .38) onto the PR latent variable in the
S-L solutions. By contrast, in the bifactor model solutions, the Matrix Rea-
soning (MR) and Figure Weights (FW) subtests tended to be associated with
small loadings (& .15) onto the nested PR latent variable, and correspondingly
larger loadings onto the general factor, in comparison with their respective
general factor loadings associated with the S-L transformed higher order model
solutions.

Next, the hypothesis that the WAIS-IV is more consistent with a CHC model
of intelligence was tested. As can be seen in Table 1, the bifactor CHC model
(Model 4) was associated with very good levels of model close-fit based on the
TLI and RMSEA indices across all four samples (e.g., ages 20-34: TLI = .965,
RMSEA = .053). However, as can be seen in Table 3, based on Raftery’s (1995)
guidelines, the bifactor WAIS-IV index model was found to be associated with
“strong” to “very strong” support to suggest that it was better fitting than the
competing CHC bifactor model (e.g., ages 20-34: ABIC = —9.8). Thus, overall,
the bifactor WAIS-IV index model may be suggested to be better fitting than
the bifactor CHC model.

Model-Based Internal Consistency Reliability

Table 4 lists the coefficient o, wy, and w; estimates across all scales and all
four samples. With respect to the FSIQ scores, the w;, estimates across all
four samples ranged between .84 and .88. By comparison, the corresponding
coefficient a estimates ranged between .91 and .93. On average, the difference
between the w; and coefficient o reliability estimates amounted to .07, which
may be considered practically significant (Gignac, Bates, et al., 2007).
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TABLE 3

CFA Model Fit Differences Between Competing CFA Models Across All Age Groups

Model 3 vs. Model 1 Model 3 vs. Model 2 Model 3 vs. Model 4
Age TLI AIC BIC TLI AIC BIC TLI AIC BIC
16-19 .032 —=77.5 —33.6 .034 —73.09 —34.2 .002 —4.9 —8.9
20-34 .017 —=79.3 —30.9 016 —74.8 —35.2 .001 —5.4 —9.8
35-54 .035 —96.9 529 .034 —93.14 —57.2 .006 —13.6 —17.6
55-69 .017 —58.0 —13.1 .012 —39.74 —3.81 .006 —14.4 —18.4

Note. TLI = Tucker-Lewis Index; AIC = Akaike Information Criterion; BIC = Bayesian
Information Criterion. Values in the table represent the results of subtracting the model fit index
value of a competing model from the WAIS-IV index bifactor model fit index value; positive values
associated with TLI suggest superior mode fit associated with the WAIS-IV index bifactor model;
negative values associated with the AIC and BIC values suggest superior model fit associated with
the WAIS-IV index bifactor model; Model 1 = WAIS-IV index higher order model; Model 2 =
WAIS-IV index oblique factor model; Model 3 = WAIS-IV bifactor model; Model 4 = CHC
bifactor model.

With respect to the WAIS-IV index scores, the w; estimates were all very low.
As can be seen in Table 4, all four index scores were found to be associated with
w; estimates less than .50, which can be contrasted to the coefficient a estimates,
which ranged between .72 and .91. On average, the difference in reliability
estimates amounted to .57, which greatly exceeded the practical significance
criterion of .06. The PS index scores were associated with the highest level of

TABLE 4
Internal Consistency Reliabilities of WAIS-IV Index Scores as Estimated via Coefficient
Alpha (a), OmegaH (wp), and Omega$S (ws): Core and Supplemental Subtests

o W Wy
Age FSIQ \4e PR WM PS FSIQ \4e PR WM PS
16-19 91 .88 .83 .82 72 .84 31 12 28 .39
20-34 93 91 .84 .84 7 .86 29 .16 13 44
35-54 92 .90 .85 .83 74 .84 29 22 24 47
55-69 93 91 .86 .81 7 .88 22 17 .00 .36

Note. o = coefficient a as estimated via SPSS; wj, and w; = omega as estimated via the implied
correlation between the WAIS-IV full scale or index latent variable and its corresponding phantom
variable within Amos 19.0. FSIQ = full scale intelligence quotient; VC = Verbal Comprehension;
PR = Perceptual Reasoning; WM = Working Memory; PS = Processing Speed.
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wy estimates across all age groups (.36 to .47). By contrast, the PR index scores
tended to be associated with w, estimates in the area of .12 to .22.2

DISCUSSION

The results of this investigation yielded consistent evidence in favor of a bifactor
model interpretation of the WAIS-IV in comparison with the more conventional
oblique and higher order models. Additionally, there was more support for
considering intersubtest covariance as more consistent with the WAIS-IV index
model than the CHC model. Based on the bifactor model, the Arithmetic subtest
was not found to be a meaningful contributor of variance to any of the four
WAIS-1V indices. Finally, the unique model-based reliabilities associated with
the FSIQ scores as estimated via w;, were found to be relatively high. By contrast,
the w; estimates associated with the index scores were found to be very low.

The bifactor WAIS-IV model was demonstrated to be practically better fitting
than the competing higher order factor model endorsed by Wechsler (2008b). The
effect was consistent across all age groups and all types of close-fit indices. These
results accord well with other published evaluations of the bifactor model tested
on the WAIS-R and the WAIS-III (Gignac, 2005, 2006a; Golay & Lecerf, 2011;
Molenaar et al., 2011). In contrast to the CFA models endorsed by Wechsler
(2008b), Benson et al. (2010), and Ward et al. (2011), the very good close-fitting
bifactor model endorsed in this investigation did not include any interindex cross
loadings, correlated residuals, or model changes based on modification indices.

The CFA results failed to support interpreting the WAIS-IV intersubtest
covariation as more aligned with the CHC model of intelligence endorsed by
Ward et al., (2011). Based on Raftery’s (1995) criteria for the BIC index, the
bifactor WAIS model was associated with “strong” to “very strong” evidence as
a better fitting model than the bifactor CHC model. Thus, the bifactor WAIS-IV
index factor model may be considered better fitting than the competing CHC
bifactor model.

2As the implied squared correlation between a phantom variable and its corresponding latent
variable has not yet been applied in the bifactor context for the purposes of estimating wj; or wy,
we demonstrate empirically its equivalence to the formulation approaches (Formulae (2) and (3))
based on the bifactor standardized solution reported in Table 2 (ages 20-34):

B 94.67 B
T 94.674+3.69+2.43+ .90 +2.72+566

[ 86.

As this is simply a demonstration, only the solution associated with the VC index wy is presented:

3.69

e T 7981 3.69+ 1.12
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In addition to yielding superior model fit, the bifactor model uncovered some
clinically consequential factor structure results relevant to the Arithmetic subtest.
Based on the Wechsler (2008b) guidelines, clinicians are instructed to use the
Digit Span and Arithmetic subtests to form the WM index. However, the results
of the bifactor modeling reported in this investigation suggest clearly that, if only
two subtests are to be chosen as indicators of Working Memory, they should
be Digit Span and Letter-Number Sequencing. That is, the Arithmetic subtest
evidenced only very small loadings on the WM index factor across all age
groups. For example, in the 20-34 portion of the normative sample, the Letter-
Number Sequencing, Digit Span, and Arithmetic subtests were associated with
loadings equal to .43, .44, and .08, respectively. Clearly, Arithmetic is only a
very weak indicator of WM. Interestingly, the corresponding S-L solution failed
to identify Arithmetic as a weak indicator of WM. In fact, the S-L solution
suggested that Letter-Number Sequencing, Digit Span, and Arithmetic were
about equally strong indicators of WM with factor loadings of .29, .29, and
.28, respectively (ages 20-34). Based on a bifactor model of the WAIS-III,
Gignac (2006a) also found that the Arithmetic subtest was only a very modest
indicator of Working Memory (.16). As per this investigation, Gignac’s (2006a)
results relevant to Arithmetic were not uncovered by the corresponding and less
well-fitting higher order or oblique factor models of the WAIS-III.

The PR index also evidenced noticeable differences in loadings between the
S-L transformed and the bifactor model solutions. Specifically, the Matrix Rea-
soning and Figure Weights subtests were associated with substantially smaller
loadings on the nested PR index latent variable in the bifactor solution than
in the S-L transformation of the higher order model solution. Correspondingly,
the Matrix Reasoning and Figure Weights subtests had larger factor loadings on
the g factor in the bifactor model than the S-L solution. These results may be
considered congruent theoretically as MR is commonly regarded as the subtest
within the WAIS-IV that it is the most closely aligned with fluid intelligence
and a good indicator of general intelligence (Tulsky, Saklofske, & Zhu, 2003).
FW also seems to share these characteristics. In comparison with the bifactor
model, it would appear that the higher order model underestimated the level of
g saturation associated with the MR and FW subtests. This may be due to the
fact that the higher order model constrains subtest general factor variance to the
degree that a particular subtest is associated with the first-order latent variable it
is specified to load upon. From this perspective, the higher order model may be
considered a test of mediation as the first-order factors mediate the association
between the subtests and the second-order general factor (Yung, Thissen, &
McLeod, 1999). By contrast, the bifactor model does not imply the same test
of mediation, as each subtest is specified to load onto the general factor and the
respective nested factor(s) directly. For this reason, Gignac (2008) contended
that the bifactor model may be considered a less theoretically complex model
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than the higher order model despite the fact that the bifactor model has fewer
degrees of freedom. It will be noted that CFA results that support a bifactor
modeling strategy are not restricted to intelligence tests. An accumulation of
research has found support for the bifactor model in the area of personality as
well (e.g., Chen, Hayes, Carver, Laurenceau, & Zhang, 2012; Gignac, 2007a;
Gignac, 2013; Reise, 2012; Thomas, 2011).

The w;, estimates associated with the WAIS-IV FSIQ scores were respectably
high (.84 to .88) although nonetheless lower than the corresponding coefficient
a estimates. The application of coefficient o to the WAIS-IV battery overesti-
mated the internal consistency reliability associated with FSIQ by, on average,
approximately .07. Brunner and Sii3 (2005) reported a much larger reduction
in the level of internal consistency reliability associated with their total scale
scores (.93 vs. .68); however, their test battery was substantially different from
that of the WAIS-IV. Overall, the bifactor modeling latent variable approach to
decomposing the levels of unique internal consistency reliability associated with
WAIS-IV composite scores does appear to have practical effects at the total scale
level. However, the level of reliability (wy) associated with the FSIQ scores does
appear to be sufficiently high for interpretation.

In contrast to the FSIQ, the unique model-based reliabilities associated with
the index scores (w;) were all estimated to be very low across all age groups. For
example, based on the 20-34 age group, the VC, PR, WM, and PS index score
ws values were estimated at .29, .16, .13, and .44, respectively. These results
accord well with Canivez and Watkins’s (2010) exploratory factor analysis of
the WAIS-IV. That is, Canivez and Watkins reported that the VC, PR, WM, and
PS group-level factors accounted for only 7.1%, 3.8%, 2.8%, and 5.3% of the
total variance, respectively. Canivez and Watkins contended that the Wechsler
(2008b) endorsed index scores should probably be considered of questionable
clinical utility in applied settings, which is a contention reiterated here. With
wy estimates substantially less than .50, the meaningful interpretation of index
scores is arguably impossible. Compounding the problem of interpreting index
scores as valid representations of narrow facets of cognitive ability is that
the reliable variance associated with index scores is dominated by g factor
variance. In clinical practice, it is unfeasible to decompose the reliable variance
associated with index scores into their constituent parts as performed in this
investigation via structural equation modeling. Thus, clinical interpretations of
WAIS-1V scores should probably be restricted to the FSIQ.

It will be noted that even when using the maximum possible number of
subtests (i.e., 15), the WAIS-IV indices are nonetheless defined by a maximum
of only 5 subtests (PR) and as few as 3 subtests (WM and PS). Based on
the principles of classical test theory, the addition of more subtests to each
index should yield greater levels of internal consistency reliability, all other
things remaining equal (Nunnally & Bernstein, 1994). However, based on the



WAIS-IV MODEL-BASED RELIABILITY 659

simulation work of Sinharay (2010), it is likely that each index would have to be
defined by at least 10 subtests to add any value beyond a general factor. Thus,
if the WAIS-IV is designed to measure four index scores, Sinharay’s simulation
research would imply that the test battery would need to be comprised of 40
subtests, which is likely much too excessive for clinical practice. Clearly, there
do not appear to be any obvious or easy solutions to the problems raised in this
article relevant to meaningful index score interpretations.

It should be emphasized that the effects observed in this investigation relevant
to internal consistency reliability would likely be observed for other well-known
cognitive ability tests. The WAIS-IV was selected simply because it is well
known and has been the subject of several recent CFA investigations. Thus,
future research may consider examining cognitive ability batteries such as the
Stanford-Binet Intelligence Scales (Roid, 2003), the Woodcock-Johnson (Wood-
cock, McGrew, & Mather, 2001), and the Multidimensional Aptitude Battery
(MAB; Jackson, 1998) using the same approach utilized in this investigation. It
is hypothesized that all multidimensional assessments associated with a relatively
strong general factor will be associated with subscales that suffer from a lack
of unique internal consistency reliability as estimated via w;.
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