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Abstract
Measurement invariance of the Wechsler Intelligence Scale for Children–Fourth Edition (WISC-
IV) was investigated with a group of 352 students eligible for psychoeducational evaluations 
tested, on average, 2.8 years apart. Configural, metric, and scalar invariance were found. 
However, the error variance of the Coding subtest was not constant across time, allowing only 
partial strict invariance. This indicates that the WISC-IV (a) was measuring similar constructs at 
both test occasions, (b) constructs had the same meaning across time, (c) scores that changed 
across time can be attributed to change in the constructs being measured and not to changes 
in the structure of the test itself, and (d) measures the same constructs equally well across 
time with the possible exception of Processing Speed due to the noninvariance of the Coding 
subtest’s residual variance. This investigation provided support for intelligence as an enduring 
trait and for the validity of the WISC-IV.
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Of all psychological tests, standardized intelligence tests are some of the most widely used by 
psychologists (Wilson & Reschly, 1996). School psychologists in particular often use standard-
ized intelligence tests as one component of a psychoeducational evaluation for the determination 
of special education eligibility (Suzuki & Valencia, 1997). Among the available standardized 
intelligence tests, the Wechsler Intelligence Scale for Children–Fourth Edition (WISC-IV; 
Wechsler, 2003a) is the most widely used (Strauss, Sherman, & Spreen, 2009). Given that special 
education eligibility decisions result in relatively long-term placements and may not be benefi-
cial to some children (Morgan, Frisco, Farkas, & Hibel, 2010), strong construct validity evidence 
is especially important.
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As intelligence is thought to be an enduring trait (Hunt, 2011), the WISC-IV should evince 
similar factor structures over time to ensure that the same traits are being measured with equal 
accuracy across time (Dimitrov, 2010). Unfortunately, there have only been four longitudinal 
factor analyses of WISC scores during the past 45 years. In the first, the WISC factor structure 
was investigated with a sample of 153 preschool-age children who were administered the WISC 
and followed up 1 year later with another administration of the WISC (Osborne, 1965). Using an 
exploratory factor analysis (EFA) with varimax rotation, the factor structure changed from pre-
school to first grade. Specifically, there were 8 factors at the first administration and 10 factors at 
the second administration. However, this study included children who were not of appropriate 
age for the WISC. In addition, the methodology of this study is problematic as the subtests were 
split into two, three, or four parts to create additional variables and the EFA methods were sub-
optimal (Gorsuch, 2003). Because of these limitations, the results of this study should be regarded 
with caution. Similar techniques and results were reported by Osborne, Anderson, and Bashaw 
(1967) for the WISC with the same fatal limitations.

In the third study, the WISC-R factor structure was examined using a longitudinal design with 
a sample of children (N = 322) eligible for special education services across a span of approxi-
mately 3 years (Juliano, Haddad, & Carroll, 1988). This study enrolled children who were identi-
fied as either White or Black; other ethnicities were not included. Results indicated that for 
students who were administered the Digit Span subtest at test and retest (n = 229), a three-factor 
solution (Verbal, Perceptual, and Freedom from Distractibility) was identified for all groups. 
Coefficients of congruence were used to quantify similarity between groups, and indicated that 
the three-factor solution remained stable for children with learning disabilities across the 3-year 
time span regardless of sex or ethnicity.

The fourth longitudinal factor analysis investigated the factor structure of the WISC-III with 
177 students classified as a child with a specific learning disability (SLD), a serious emotional 
disability (SED), mental retardation (MR), or other disabilities (Watkins & Canivez, 2001). 
These students were twice administered the WISC-III approximately 3 years apart. Four models 
were initially evaluated using confirmatory factor analysis (CFA) and the first-order, four-factor 
model was accepted as the best fitting model for both test and retest occurrences. Test and retest 
data were also analyzed for invariance of the factor structure across time. Initially, all factor load-
ings, factor variances, factor covariances, and subtest error variances were constrained to be 
equal; however, this model had inferior fit in comparison with a baseline model. It was deter-
mined that this misfit was likely due to the error variances for three subtests (Vocabulary, Coding, 
and Arithmetic). Upon releasing those constraints, the model fit was significantly improved. 
These results indicated that the WISC-III measured the same constructs across time and that the 
constructs were manifested in the same way across groups.

There have been no investigations of the longitudinal factorial invariance of the WISC-IV. 
Cross-sectional analysis of the WISC-IV has supported the assumption of longitudinal invariance 
(Keith, Fine, Taub, Reynolds, & Kranzler, 2006), but cross-sectional analyses may not be ade-
quate for detecting change over time (Willett, Singer, & Martin, 1998). Thus, there is no evidence 
regarding the factorial invariance of the WISC-IV across time for the same individuals. If longi-
tudinal factorial invariance exists, differences in obtained WISC-IV test–retest scores can be 
unequivocally attributed to respondents changing on the underlying constructs being measured. 
In the absence of longitudinal factorial invariance, WISC-IV-obtained test–retest scores cannot 
be compared because changes in test scores could be due to a myriad of reasons other than 
changes in the respondents’ standing on the underlying constructs (Dimitrov, 2010). In that situ-
ation, the use of WISC-IV scores for identification of children with disabilities would be suspect. 
Therefore, the current study will use CFA techniques to examine the temporal stability of the 
factor structure of the WISC-IV in a clinically referred sample.
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Method

Participants

Three hundred fifty-two students (66% males) who were twice administered the WISC-IV, with 
all 10 core subtests administered at each test session, served as participants in the current study. 
Participant ages ranged from 6.1 to 14.11 years at first testing and 7.5 to 16.6 years at second 
testing with an average test–retest interval of 2.84 years. Reported ethnic breakdown of the sam-
ple was 79% White, 11% Hispanic, 6% Black, and 4% Other. Special education placement was 
determined by local multidisciplinary evaluation teams following state regulations. Special edu-
cation diagnosis on initial evaluation included 66% SLD, 9% other health impairment (OHI; 
attention-deficit/hyperactivity disorder [ADHD]), 8% SED, 5% nonhandicapped, 4% autism, 2% 
MR, 3% OHI (non-ADHD), and 3% other. To preserve respondents’ privacy, no other informa-
tion was collected.

Instrument

The WISC-IV is an individually administered intelligence test for children between the ages of 6 
and 16 years. The WISC-IV consists of 15 subtests, 10 core and 5 supplemental, each with a 
mean of 10 and a standard deviation of 3. The 10 core subtests are used to form a Full Scale 
Intelligence Quotient (FSIQ) score as well as four index scores: Verbal Comprehension Index 
(VCI; Similarities, Vocabulary, and Comprehension), Perceptual Reasoning Index (PRI; Block 
Design, Matrix Reasoning, and Picture Concepts), Working Memory Index (WMI; Digit Span 
and Letter-Number Sequencing), and Processing Speed Index (PSI; Coding and Symbol Search). 
The FSIQ and index scores have a mean of 100 and a standard deviation of 15.

There has been some debate about the factor structure of the WISC-IV. The technical manual 
reported that a first-order, four-factor oblique structure fit the core subtests the best (Wechsler, 
2003b), mapping onto the VCI, WMI, PSI, and PRI index scores. Others studies have found that 
a higher order (Keith et al., 2006) or bifactor (Watkins, 2006) general intelligence factor (g) 
should also be considered, as it explained more of the subtest covariance than any first-order fac-
tor (Bodin, Pardini, Burns, & Stevens, 2009; Watkins, 2006, 2010; Watkins, Wilson, Kotz, 
Carbone, & Babula, 2006).

Procedure

Following Institutional Review Board (IRB) and school district approval, special education files 
in two participating Southwestern school districts were reviewed and relevant WISC-IV scores 
were extracted. In total, there were 457 students who were twice administered the WISC-IV. 
However, only 352 students had complete subtest scores at both test and retest. School district 
demographics were collected from information provided by the National Center for Educational 
Statistics (2012). The first district comprised approximately 84% non-Hispanic or Latino stu-
dents, with 6% of their students identified as English Language Learners. The second district 
comprised approximately 88% non-Hispanic or Latino students, with 4% of their students’ iden-
tified as English Language learners.

Analyses

Model specification.  CFA will allow a robust examination of the invariance of the WISC-IV struc-
ture across time (Byrne & Stewart, 2006; Millsap & Cham, 2012). When examining factorial 
invariance, the first step is to determine the baseline factor structure within each testing occasion 
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(van de Schoot, Lugtig, & Hox, 2012). For this study, we tested three models: (a) four oblique 
first-order factors representing the VCI, PRI, WMI, and PSI; (b) a higher order factor model with 
one second-order factor and four first-order factors; and (c) a bifactor model with one general 
factor and four orthogonal domain-specific factors. For bifactor model identification, we con-
strained the loadings for the WMI subtests to be equal and the loadings for the PSI subtests to be 
equal.

Testing invariance.  Testing invariance across time is similar to testing invariance across groups, 
except the covariances between like indicator variables’ uniquenesses and common factors across 
measurement occasions are sometimes included in the model due to domain-specific covariance 
not accounted for by the factor model (McArdle, 2009). Consequently, Vandenberg and Lance 
(2000) noted that there are two ways to assess measurement invariance with longitudinal data. 
The first is to treat the data at the different occasions as if they came from two separate groups 
and conduct invariance assessment as a typical multigroup model. Although this model is the 
more parsimonious of the two, it cannot account for correlated residuals or factors across time.

The second approach is to treat the data as if they come from a single sample, similar to tradi-
tional repeated measures ANOVAs. This way of assessing invariance posits as many factor mod-
els as there are time points, and allows across-occasion covariances for each indicator’s residual 
variance and each common factor. A disadvantage of this approach is that the input covariance 
matrix is made up of both the within-occasion and between-occasion covariances, which some-
times results in poor model fit and improper solutions. However, the same levels of invariance 
are investigated for either the single-sample or multiple-group approach (see Table 1).

Determining model fit.  Researchers (e.g., Byrne & Stewart, 2006) have suggested two sets of cri-
teria for testing factorial invariance. The traditional perspective examines the change in χ2 (Δχ2) 
across nested models. If, as the models grow more restrictive, the χ2 values do not significantly 
change (using a given α level), this is evidence that the more restrictive model fits the data as well 
as the less restrictive model; thus, the more restrictive (i.e., more parsimonious) model should be 
favored over the less restrictive one.

The use of χ2 values has been criticized because of their sensitivity to sample size (Byrne & 
Stewart, 2006). Cheung and Rensvold (2002) and Meade, Johnson, and Braddy (2008) argued 
that some alternative fit indices (AFIs) are not as susceptible to this problem. Specifically, they 
found that the comparative fit index (CFI) and McDonald’s (1989) noncentrality index (Mc) 

Table 1.  Levels of Measurement Invariance.

Model Title Description Comparisons allowed

1 Configural The factor model for all groups is the same. No 
parameter constraints are imposed.

None

2 Weak/metric 1 + all factor pattern coefficients are constrained to 
be the same between groups (but can vary within 
a group)

Factor (co)variances 
(weak evidence)

3 Strong/scalar 2 + all intercepts are constrained to be the same 
between groups (but can vary within a group)

Factor means, factor 
(co)variances (strong 
evidence)

4 3 + constrain the factor variances/covariances to be 
the same across groups

Reliability (necessary, 
but not sufficient)

5 Strict 3 + measurement error variances/covariances are 
constrained to be the same between groups (but 
can vary within a group)

Reliability (sufficient 
in conjunction with 
Model 4)
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were more robust. Thus, the second set of evaluations criteria takes a practical perspective and 
recommends that invariance be based on two criteria: (a) The multigroup factor model exhibits 
an adequate fit to the data, and (b) the change in values for AFIs (e.g., ΔCFI, ΔMc) is 
negligible.

Based on Byrne and Stewart’s (2006) recommendations, this study used two sets of fit indices: 
one to assess overall model fit and the other to assess change in model fit between two models. 
As Hu and Bentler (1999) suggested, we used multiple fit indices for both. For this study’s crite-
ria of overall model-data fit, we used the following: (a) root mean square error of approximation 
(RMSEA) ≤ .08; (b) standardized root mean square residual (SRMR) ≤ .08, and (c) CFI ≥ .96 (Hu 
& Bentler, 1999; Yu, 2002). To test the change in fit between nested models, we used the ΔCFI 
and ΔMc (Meade et al., 2008). Cheung and Rensvold (2002) suggested .01 as the threshold for 
ΔCFI and .02 as the threshold for ΔMc.

For both overall model fit as well as change in model fit, we looked for patterns in the fit 
statistics and judged acceptance/rejection of the specific model based on the majority of the indi-
ces. All analyses were done in R (R Development Core Team, 2012) using the lavaan (Rosseel, 
2012) and psych (Revelle, 2012) statistical packages.

Results

Data Inspection

Descriptive statistics for WISC-IV subtest, factor, and IQ scores at test and retest for this referred 
sample are reported in Table 2 and correlations between subtests at test and retest are provided in 
Table 3. These results indicate that the current sample exhibited slightly lower and more variable 
scores than the normative sample of the WISC-IV (Wechsler, 2003b). Similar score patterns have 
been observed in other clinical samples (Watkins et al., 2006). The univariate score distributions 
from the current sample appear to be relatively normal across both test administrations (West, 

Table 2.  Descriptive Statistics for Wechsler Intelligence Scale for Children–Fourth Edition (WISC-IV) 
Scores of 352 Students Twice-Tested for Special Education Eligibility.

M SD

Variable Test Retest Test Retest

Block design 9.19 8.67 2.80 2.98
Similarities 8.77 9.18 2.62 2.80
Digit span 7.98 7.82 2.61 2.58
Picture concepts 9.53 9.99 3.31 3.00
Coding 8.41 7.52 3.15 2.90
Vocabulary 8.60 8.44 2.65 2.74
Letter-number sequencing 8.05 8.17 2.81 3.12
Matrix reasoning 9.08 9.10 2.95 3.09
Comprehension 8.85 8.92 2.71 2.60
Symbol search 8.44 8.67 3.24 3.10
Verbal comprehension 92.5 93.0 12.7 13.2
Perceptual reasoning 95.5 95.4 15.0 15.7
Working memory 88.3 88.0 13.0 14.2
Processing speed 91.3 89.3 15.2 15.0
Full scale IQ/g 90.3 89.9 13.6 14.5

Note.IQ = intelligence quotient.
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Table 3.  Correlations of WISC-IV Subtests at Test and Retest.

VC SI CO BD PCn MR DS LN CD SS

VC .69 .63 .64 .38 .43 .39 .40 .44 .18 .33
SI .70 .59 .48 .28 .35 .34 .30 .32 .06 .34
CO .60 .53 .50 .23 .40 .30 .24 .36 .19 .31
BD .37 .45 .39 .71 .43 .53 .46 .41 .24 .37
PCn .40 .45 .40 .46 .47 .46 .36 .38 .23 .38
MR .44 .51 .41 .65 .56 .62 .39 .45 .14 .37
DS .39 .39 .40 .45 .30 .47 .61 .47 .20 .39
LN .48 .41 .48 .46 .36 .47 .53 .49 .30 .37
CD .15 .11 .37 .30 .28 .29 .29 .32 .52 .44
SS .27 .28 .37 .40 .33 .42 .32 .41 .62 .54

Note. Test correlations are in the upper triangle, Retest correlations are in the lower triangle, and test–retest 
correlations are on the diagonal. WISC-IV = Wechsler Intelligence Scale for Children–Fourth Edition; VC = 
Vocabulary; SI = Similarities; CO = Comprehension; BD = Block Design; PCn = Picture Concepts; MR = Matrix 
Reasoning; DS = Digit Span; LN = Letter-Number Sequencing; CD = Coding; SS = Symbol Search.

Finch, & Curran, 1995). In addition, examination of each variable’s associated histogram indi-
cated that the sample appears to generally follow the shape of a normal distribution. Nevertheless, 
we used maximum likelihood parameter estimators with standard errors and a mean-adjusted 
chi-square test statistic that are robust to nonnormality (Satorra & Bentler, 2001).

Factor Models

Table 4 contains the fit statistics for the three alternative models within each testing occasion. Not 
unexpectedly, the models fit relatively similarly at both time points (Murray & Johnson, 2013). 
Chen, West, and Sousa (2006) suggested that when examining invariance, the bifactor model is 
better than a second-order factor model because the bifactor model allows for tests of invariance 
of the domain-specific factors as well as the general factor. In contrast, a second-order model 
only allows for direct tests of invariance for the second-order factor, as the first-order factors are 
represented by disturbances. Consequently, we chose the bifactor model to use for the invariance 
assessment. Figure 1 displays the bifactor model. This choice was corroborated by an EFA as per 
Carroll (1993), which produced similar orthogonal structures.

Table 4.  Fit Statistics for Alternative Baseline Models at Test and Retest.

Model χ2 df CFI RMSEA SRMR

Test
  Four oblique factors 61.53 29 .96 .06 .03
  Second-order 62.25 31 .97 .05 .03
  Bifactor 58.91 27 .96 .06 .03
Retest
  Four oblique factors 90.94 29 .94 .08 .04
  Second-order 98.09 31 .94 .08 .05
  Bifactor 77.37 27 .95 .07 .04

Note. All statistics based on scaled χ2 statistic and significant using α = .01. CFI = comparative fit index; RMSEA 
= root mean square error of approximation; SRMR = standardized root mean square residual; Mc = McDonald’s 
noncentrality index.
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Invariance

The first step in testing the measurement invariance hierarchy was to assess configural invariance 
using both the single-sample and multiple-group approach (van de Schoot et al., 2012). Initially, 
we tested for configural invariance using the multiple-group approach, which does not allow 
residual or factor variances to covary across time (see Model 1a in Table 5). Although the χ2 value 
was statistically different than zero, the AFIs indicated that the model fit the data relatively well. 
Subsequently, we examined configural invariance using the single-sample approach, allowing 
the common factors and residual variances from the same indicators to covary across the two 

Figure 1.  Bifactor model with orthogonal domain-specific group factors.
Note. All values are standardized and from Model 5a. Residual variances are not shown. SI = Similarities; VO = 
Vocabulary; CO = Comprehension; BD = Block Design; PCn = Picture Concepts; MR = Matrix Reasoning; DS = Digit 
Span; LN = Letter-Number Sequencing; CD = Coding; and SS = Symbol Search; VC = Verbal Comprehension factor; 
PR = Perceptual Reasoning factor; WM = Working Memory factor; PS = Processing Speed factor.
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time points (Model 1b). For all fit indices except Mc, the single-sample model showed a better 
fit to the data than the multiple-group model. Consequently, we used the single-sample model as 
our baseline for subsequent tests of invariance.

We next examined metric/weak invariance (van de Schoot et al., 2012), which constrains the 
factor loadings between groups (Model 2). This analysis allows factor variances between groups 
to vary, so we constrained the following loadings for identification: (a) Vocabulary and Coding 
were constrained to one for the domain-specific factors; (b) Similarities was constrained to one 
for the general factor; and (c) both loadings for the WM factor and the PS factor were constrained 
to one because each factor comprised only two subtests.1 The values for the CFI, RMSEA, and 
SRMR indices indicated that this model fit the data relatively well. Moreover, the Δχ2, ΔCFI, and 
ΔMc values indicated that the model did not fit worse than Model 1b using the Cheung and 
Rensvold (2002) criteria (see Table 6). Substantiation of metric invariance was also obtained 
from the EFA (Horn & McArdle, 1992; Lorenzo-Seva & ten Berge, 2006), with congruence coef-
ficients that ranged from good (.97) to excellent (.99) according to the guidelines provided by 
MacCallum, Widaman, Zhang, and Hong (1999).

A number of measurement researchers agree that achieving both configural and metric facto-
rial invariance is enough evidence to determine that a measure is invariant across time (Bentler, 
2005; Widaman & Reise, 1997) and that further invariance testing is discretionary (Vandenberg 
& Lance, 2000; Wu, Li, & Zumbo, 2007) or unwarranted (Selig, Card, & Little, 2008). Others 
believe that strict invariance is required, especially when tests are used for individual decisions 
(Meredith & Teresi, 2006). Accordingly, this study continued to evaluate measurement invari-
ance by addressing both strong/scalar and strict levels of invariance.

We next examined scalar/strong invariance (van de Schoot et al., 2012), which constrains the 
manifest variables’ intercepts between groups but allows the latent variables’ means to differ 

Table 5.  Fit Statistics for Invariance Models.

Model χ2 df CFI RMSEA SRMR Mc

1a—Configural (multigroup) 136.21 54 .957 .07 .04 .943
1b—Configural (single sample) 219.95 139 .969 .04 .04 .891
2—Metric 248.14 152 .963 .04 .05 .872
3—Scalar 259.86 157 .960 .04 .05 .864
4—Latent variances 272.35 162 .957 .04 .06 .855
5—Strict invariance 300.29 172 .950 .05 .05 .833
5a—Strict invariance (partial) 286.91 171 .955 .04 .06 .848

Note. All statistics based on scaled χ2 statistic. CFI = comparative fit index; RMSEA = root mean square error of 
approximation; SRMR = standardized root mean square residual; Mc = McDonald’s noncentrality index.

Table 6.  Change in Fit Statistics for Invariance Models.

Comparison Δχ2 Δdf p ΔCFI ΔMc

Model 1b vs. 2 28.19 13 .01 .006 .019
Model 2 vs. 3 11.72 5 .04 .003 .008
Model 3 vs. 4 12.49 5 .03 .003 .009
Model 4 vs. 5 27.93 10 .01 .007 .022
Model 4 vs. 5a 14.55 9 .10 .002 .007

Note. See Table 1 for invariance model descriptions. Δχ2 based on scaled difference (Satorra & Bentler, 2001). CFI = 
comparative fit index; Mc = McDonald’s noncentrality index.
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between groups (Model 3). All the AFIs indicated that the model fit the data relatively well. 
Moreover, the Δχ2, ΔCFI, and ΔMc values all indicated that the model fit no worse than the metric 
invariance model.

Next, we tested the latent variables’ variances across test and retest (van de Schoot et al., 
2012). We constrained all the latent variable’s variances to be one and allowed the loadings for 
WMI and PSI factors to be a value different than one. All the model fit indices indicated that the 
model fit the data relatively well. The Δχ2, ΔCFI, and ΔMc values all indicated that the model fit 
no worse than the scalar invariance model.

The strict invariance model, which constrains the residual variances across groups (van de 
Schoot et al., 2012), was tested next (Model 5). The SRMR and RMSEA indicated that the model 
fit the data relatively well, but the Δχ2, ΔCFI, and ΔMc values indicated that that the model fit 
worse than the previous model. Thus, the model does not appear to have complete strict invari-
ance across time. An examination of the residual variances found the Coding subtest to be most 
disparate. We removed the equality constraints for the Coding subtest and refit the model (Model 
5a). All the model fit indices indicated that the revised model fit the data relatively well. The Δχ2, 
ΔCFI, and ΔMc values all indicated that the model fit no worse than the prior test of latent vari-
ances. Thus, the model exhibited partial strict invariance, indicating that any differences between 
the means and variances of the WISC-IV subtests was due solely to differences in the constructs 
that they measure. Thus, with the exception of the Coding subtest, “all group differences on the 
measured variables are captured by, and attributable to, group differences on the common fac-
tors” (Widaman & Reise, 1997, p. 296). The final model is illustrated in Figure 1.

Discussion

The goal of the current study was to investigate measurement invariance of the WISC-IV for a 
group of 352 students eligible for psychoeducational evaluations tested, on average, 2.8 years 
apart. Using CFA methods, the bifactor model exhibited partial strict invariance across time, with 
the error variance of the Coding subtest being the only residual variance that differed across time.

Verification of configural invariance indicates that the same factor structure was maintained 
across time. Thus, there was the same number of latent variables, indicator variables, and pattern 
of fixed and estimated parameters at both test and retest. This indicates that the WISC-IV was 
measuring similar constructs at both test and retest occasions. Configural invariance is consid-
ered to be the least restrictive test of similarity of factors across time (Dimitrov, 2010).

The achievement of metric invariance means that corresponding factor loadings (i.e., pattern 
coefficients) were equivalent across time. That is, each subtest loaded equivalently on its respec-
tive factors at both test and retest occasions. Thus, the constructs being measured were equivalent 
at both test and retest. This provides evidence that the observed WISC-IV scores (e.g., FSIQ, 
VCI, PRI, etc.) were assessing factors of the WISC-IV (e.g., g, VC, PR, etc.) in the same way at 
both test and retest (Horn & McArdle, 1992; Wu et al., 2007).

Attaining scalar/strong invariance indicates that factor means and variances can be compared 
across time (Dimitrov, 2010). Therefore, any change in observed WISC-IV test scores (e.g., 
FSIQ, VCI, PRI, etc.) across time can be attributed to change in the constructs being measured 
(e.g., g, VC, PR, etc.) and not to changes in the structure of the test itself. Thus, students with the 
same ability at either test occasion achieved the same manifest scores on the WISC-IV, allowing 
valid comparisons of mean scores and correlations across groups (Horn & McArdle, 1992).

A model with partial strict invariance indicates that the latent variables the WISC-IV is mea-
suring, with the possible exception of Processing Speed due to the noninvariance of the Coding 
subtest’s residual variance, were measured with equal precision at both test occasions. The error 
variance of the WISC-III Coding subtest was also found to lack longitudinal invariance (Watkins 
& Canivez, 2001). Thus, differences in WISC-IV obtained scores across time (with the exception 
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of Coding) were due to differences in their latent means (Dimitrov, 2010). This supports the 
hypothesis that the WISC-IV measures the same constructs equally well across time.

Limitations

As with all research, there are a number of limitations in the current study. The greatest of these 
limitations is the sample. Although a sample of 352 students is typically considered to be large, 
this is a relatively small sample for factorial invariance testing of complex structures. Ideally, a 
larger sample is desired when completing these types of analysis (Byrne, 2012). In addition, the 
sample used in this study was from two school districts in one Southwestern state and thus may 
not be generalizable to other regions. Furthermore, the sample consisted solely of students twice 
referred for a psychoeducational evaluation for special education eligibility. The characteristics 
that resulted in two WISC-IV administrations may have been unique. A final limitation of this 
study is the method of data collection. As the data was collected from archived special education 
records, administration and recording accuracy of the individual psychologists who administered 
the WISC-IV had to be assumed.

Conclusion

Although the longitudinal structural stability of the WISC-IV has not previously been investi-
gated, cross-sectional measurement has found it to be consistent across ages 6 to 16 years (Keith 
et al., 2006). Likewise, the temporal stability of other cognitive ability test scores has been dem-
onstrated with children (Watkins & Canivez, 2001) as well as adults (Reeve & Bonaccio, 2011). 
The current study demonstrated that changes in WISC-IV scores across time can be attributed to 
change in the constructs being measured and not to change in the structure of the test itself. These 
results provide support for intelligence as an enduring trait (Hunt, 2011) and for the validity of 
the WISC-IV. However, obtained factor index scores are not pure measures of their underlying 
constructs because each obtained index score is influenced by g as well as error. For example, 
about 60% of the variance in the VCI score is due to g (Schneider, 2013). This complex relation-
ship between latent and obtained scores should be considered when interpreting WISC-IV sub-
test, index, and full scale scores (DeMars, 2013).

Acknowledgment

The contributions of Dr. John Balles and Dr. Christa Lynch are gratefully acknowledged.

Authors’ Note

This study is based on the dissertation of the first author. Dr. Richerson is now with the Scottsdale Unified 
School District, Scottsdale, Arizona.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or 
publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Note

1.	 We also fit a model constraining the variance of Working Memory (WM) and Processing Speed 
(PS) to one and estimating the factor loadings of the WM and PS factors. The difference in fit 
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was minimal: χ2 = 251.66, df = 154, comparative fit index (CFI) = .962, root mean square error 
of approximation (RMSEA) = .04, standardized root mean square residual (SRMR) = .05, and 
McDonald’s noncentrality index (Mc) = .870.
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