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Abstract

Independent exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) research with the Wechsler
Intelligence Scale for Children—Fifth Edition (WISC-V) standardization sample has failed to provide support for the five
group factors proposed by the publisher, but there have been no independent examinations of the WISC-V structure
among clinical samples. The present study examined the latent structure of the 10 WISC-V primary subtests with a large
(N = 2,512), bifurcated clinical sample (EFA, n = 1,256; CFA, n = 1,256). EFA did not support five factors as there were
no salient subtest factor pattern coefficients on the fifth extracted factor. EFA indicated a four-factor model resembling
the WISC-IV with a dominant general factor. A bifactor model with four group factors was supported by CFA as suggested
by EFA. Variance estimates from both EFA and CFA found that the general intelligence factor dominated subtest variance
and omega-hierarchical coefficients supported interpretation of the general intelligence factor. In both EFA and CFA, group
factors explained small portions of common variance and produced low omega-hierarchical subscale coefficients, indicating
that the group factors were of poor interpretive value.
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The Wechsler Intelligence Scale for Children—Fifth Edition VS and FR factors in an attempt to make the WISC-V more

(WISC-V; Wechsler, 2014a) is a major test of cognitive
abilities for children aged 6 to 16 years. Its development
and construction was influenced by Carroll, Cattell, and
Horn (Carroll, 1993, 2003; Cattell & Horn, 1978; Horn,
1991; Horn & Blankson, 2005; Horn & Cattell, 1966), often
referred to as Cattell-Horn—Carroll (CHC) theory
(Schneider & McGrew, 2012), and neuropsychological con-
structs (Wechsler, 2014¢). The Wechsler Intelligence Scale
for Children—Fourth Edition (WISC-IV; Wechsler, 2003)
Word Reasoning and Picture Completion subtests were
deleted and, to better measure purported CHC broad abili-
ties, three new subtests were added. Specifically, Picture
Span (PS) was adapted from the Wechsler Preschool and
Primary Scale of Intelligence—Fourth Edition (WPPSI-IV;
Wechsler, 2012) to measure visual Working Memory (WM),
while Visual Puzzles (VP) and Figure Weights (FW) were
adapted from the Wechsler Adult Intelligence Scale—Fourth
Edition (WAIS-IV; Wechsler, 2008) to better measure
Visual Spatial (VS) and Fluid Reasoning (FR), respectively.
The addition of VP and FW was made to facilitate splitting
the former Perceptual Reasoning (PR) factor into distinct

consistent with CHC theory.

The WISC-V measurement model preferred by the
publisher is illustrated in Figure 1. The structural valida-
tion procedures and analyses reported in the WISC-V
Technical and Interpretive Manual (Wechsler, 2014c) that
were provided in support of this preferred model and on
which scores and interpretations were created have been
criticized as problematic (Beaujean, 2016; Canivez &
Watkins, 2016; Canivez, Watkins, & Dombrowski, 2016,
2017). Specifically, problems include (a) use of weighted
least squares (WLS) estimation without explicit justifica-
tion rather than maximum likelihood (ML) estimation
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Figure |. Higher-order measurement model with standardized coefficients.

Note. WISC-V = Wechsler Intelligence Scale for Children—Fifth Edition; SI = Similarities; VC = Vocabulary; IN = Information; CO = Comprehension;
BD = Block Design; VP = Visual Puzzles; MR = Matrix Reasoning; PC = Picture Concepts; FW = Figure Weights; AR = Arithmetic; DS = Digit Span;
PS = Picture Span; LN = Letter—Number Sequencing; CD = Coding; SS = Symbol Search; CA = Cancellation.

Source. Adapted from Figure 5.1 (Wechsler, 2014c) for WISC-V standardization sample (N = 2,200) 16 subtests.
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(Kline, 2011); (b) failure to fully disclose details of confir-
matory factor analysis (CFA) methods; (c) preference for
a complex measurement model (cross-loading Arithmetic
on three group factors) thereby abandoning parsimony of
simple structure (Thurstone, 1947); (d) retention of a
model with a standardized path coefficient of 1.0 between
general intelligence and the FR factor indicating that FR
and g are empirically redundant; (¢) failure to consider
rival bifactor models (Beaujean, 2015); (f) omission of
decomposed variance estimates; and (g) absence of model-
based reliability estimates (Watkins, 2017). These prob-
lems call into question the publisher’s preferred WISC-V
measurement model.

A number of these concerns are not new and were previ-
ously identified and discussed with other Wechsler scales
(Canivez, 2010, 2014b; Canivez & Kush, 2013; Gignac &
Watkins, 2013), but they were not addressed in the WISC-V
Technical and Interpretive Manual thereby continuing a
tendency by the publisher to ignore “contradictory findings
available in the literature” (Braden & Niebling, 2012, p.
744). For example, the publisher referenced Carroll’s
(1993) three stratum theory as a foundation for the WISC-V
but decomposed variance estimates provided by the Schmid
and Leiman (SL; 1957) transformation were not provided
even though Carroll (1995) insisted on use of the SL trans-
formation of exploratory factor analysis (EFA) loadings to
allow subtest variance apportionment among the first-order
dimension and higher-order dimension. Additionally,
Beaujean (2015) noted that Carroll’s (1993) model was
ostensibly a bifactor model but no examination of an alter-
native bifactor structure for the WISC-V was reported
(Wechsler, 2014c).

Higher-order representations of Wechsler scales (and
other intelligence tests) specify general intelligence (g) as a
superordinate (second-order) factor that is fully mediated
by the first-order group factors which have direct influences
(paths) on the subtest indicators (Gignac, 2008). Thus, g has
indirect influences on subtest indicators, which may obfus-
cate the role of g. The bifactor model initially conceptual-
ized by Holzinger and Swineford (1937) does not include a
hierarchy of g and the first-order group factors. Rather,
bifactor models specify g as a breadth factor with direct
influences (paths) on subtest indicators, and group factors
also have direct influences on subtest indicators (Gignac,
2005, 2006, 2008). Because the bifactor model includes g
and group factors at the same level of inference and includes
simultaneous influence on subtest indicators, the bifactor
model can be considered a more conceptually parsimonious
model (Gignac, 2006) and also more consistent with
Spearman (1927). According to Beaujean (2015), Carroll
(1993) favored the bifactor model where all subtests load
directly on g and on one (or more) of the first-order group
factors. For further discussion of bifactor models see
Canivez (2016) or Reise (2012).

Because EFA was not reported in the WISC-V Technical
and Interpretive Manual, Canivez et al. (2016) conducted
independent EFA with the 16 WISC-V primary and second-
ary subtests and did not find support for five factors with the
total WISC-V standardization sample. The fifth factor con-
sisted of only one salient subtest pattern coefficient. When
the standardization sample was divided into four age groups
(6-8,9-11, 12-14, and 15-16 years), only one salient subtest
factor loading was found for the fifth factor for all but the
15- to 16-year-old age group (Dombrowski, Canivez, &
Watkins, 2017). Both studies found support for four first-
order WISC-V factors resembling the traditional WISC-IV
structure (i.e., Verbal Comprehension [VC], PR, WM,
Processing Speed [PS]).

Schmid and Leiman (1957) orthogonalization of the sec-
ond-order EFA with the total WISC-V standardization sam-
ple and the four age groups yielded substantial portions of
variance apportioned to the general factor (g) and consider-
ably smaller portions of variance uniquely apportioned to
the group factors (Dombrowski et al., 2017). Omega-
hierarchical (u)H) coefficients (Reise, 2012; Rodriguez,
Reise, & Haviland, 2016) for the general factor ranged from
.817 (Canivez et al., 2016) to .847 (Dombrowski et al.,
2017) and exceeded the preferred level (.75) for clinical
interpretation (Reise, 2012; Reise, Bonifay, & Haviland,
2013; Rodriguez et al., 2016). Omega-hierarchical subscale
(u)HS) coefficients (Reise, 2012) for the four WISC-V group
factors ranged from .131 to .530. The ®, coefficients for
VC, PR, and WM group factor scores failed to approach or
exceed the minimum criterion (.50) desired for clinical
interpretation (Reise, 2012; Reise et al., 2013), but o,
coefficients for PS scores approached or exceeded the .50
criterion that might allow clinical interpretation.

Dombrowski, Canivez, Watkins, and Beaujean (2015),
using exploratory bifactor analysis (i.e., EFA with a bifactor
rotation [EBFA]; Jennrich & Bentler, 2011), also failed to
identify five WISC-V factors within the WISC-V standard-
ization sample. The failure to find a VC factor by
Dombrowski et al. (2015) is inconsistent with the long-
standing body of structural validity evidence for the
Wechsler scales where every other study located a distinct
verbal ability dimension. It is unknown why this anomalous
result was produced. Dombrowski et al. speculated that it
could be a function of the WISC-V simply having verbal
subtests that are predominantly g loaded. Unlike the
Schmid-Leiman procedure, an approximate bifactor solu-
tion, Jennrich and Bentler’s (2011) EBFA procedure is a
true EBFA procedure that may produce different results.
Thus, it could be possible that the WISC-V verbal subtests
“collapsed” onto the general factor following simultaneous
extraction of general and specific factors. In other words,
following the bifactor rotation it is plausible that most of the
variance could have been apportioned to the general factor
leaving nominal variance to the specific verbal factor
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producing the results evident in the Dombrowski et al.
study. This speculation is supported by recent simulation
research that found these exploratory bifactor routines to be
prone to group factor collapse onto the general factor and to
local minima problems, especially with variables that are
either poorly or complexly related to one another (Mansolf
& Reise, 2016).

Lecerf and Canivez (2018) similarly assessed the French
WISC-V standardization sample (French WISC-V;
Wechsler, 2016b) with hierarchical EFA and also found
support for four first-order factors (not five), the dominant
general intelligence factor, and little unique reliable mea-
surement of the four group factors. Assessment of the
WISC-VYS (Wechsler, 2016a) using hierarchical EFA also
failed to identify five WISC-V factors and like the French
WISC-V and U.S. versions contained too little unique vari-
ance among the four group factors for confident interpreta-
tion (Canivez, Watkins, & McGill, 2018b).

In a follow-up study, Canivez, Watkins, and Dombrowski
(2017) examined the latent factor structure of the 16
WISC-V primary and secondary subtests using CFA with
ML estimation and found that all higher-order models that
included five group factors (including the final publisher-
preferred  WISC-V model presented in the WISC-V
Technical and Interpretative Manual) produced improper
solutions (i.e., negative variance estimates for the FR fac-
tor) potentially caused by misspecification of the models.
An acceptable solution for a bifactor model that included
five group factors fit the standardization sample data well
based on global fit, but examination of local fit identified
problems where Matrix Reasoning (MR), FW, and Picture
Concepts (PC) did not have statistically significant FR
group factor loadings, rendering this model inadequate.
Consistent with the Canivez et al. (2016) WISC-V EFA
results, the WISC-V bifactor model with four group factors
(VC, PR, WM, and PS) appeared to be the most acceptable
solution based on a combination of statistical fit and
Wechsler theory. As with the EFA analyses, a dominant gen-
eral intelligence dimension but weak group factors with
limited unique measurement beyond g was found. Similar
CFA findings were also found with the WISC-VSP"
(Wechsler, 2015) in an independent study of standardization
sample data (Fenollar-Cortés & Watkins, 2019) as well as
with the French WISC-V (Lecerf & Canivez, 2018) and the
WISC-VYX (Canivez et al., 2018).

H. Chen, Zhang, Raiford, Zhu, and Weiss (2015) reported
invariance of the final publisher-preferred WISC-V higher-
order model with five group factors across gender, but
invariance for rival higher-order or bifactor models was not
examined. Reynolds and Keith (2017) also investigated the
measurement invariance of the WISC-V across age groups
with CFA, but only examined an oblique five-factor model,
which did not include a general intelligence dimension. As
noted by Hayduk (2016), if the number of factors are not

accurately specified then “asking about invariance between
groups is asking whether the groups agree in their misrepre-
sentation of the connections between the indicators and the
underlying latent variables” (p. 2).

Reynolds and Keith (2017) also explored numerous
(perhaps post hoc) model modifications for five-factor first-
order models and then for both higher-order and bifactor
models including five group factors to better understand
WISC-V measurement. Based on these alternate models
(modifications), Reynolds and Keith suggested a model dif-
ferent from the publisher-preferred model that allowed a
direct loading from general intelligence to Arithmetic, a
cross-loading of Arithmetic on WM, and correlated distur-
bances of the VS and FR group factors. Even with these
modifications the model still produced a general intelli-
gence to FR standardized path coefficient of .97, suggesting
that these dimensions may be empirically redundant.
However, post hoc modifications capitalize on chance and
“such changes often lead the model away from the popula-
tion model, not towards it” (Gorsuch, 2003, p. 151). Of
note, when that same VS—FR factor covariance was allowed
in a structural model for the Canadian WISC-V standardiza-
tion sample (WISC-VPN; Wechsler, 2014b), it was not
superior to a bifactor model with four group factors
(Watkins, Dombrowski, & Canivez, 2018).

Understanding the structural validity of tests is essential
for evaluating the interpretability of scores and score com-
parisons (American Educational Research Association,
American Psychological Association, & National Council
on Measurement in Education, 2014). Accordingly, test
users must select technically sound instruments with dem-
onstrated validity for the population under evaluation
(Evers et al., 2013; International Test Commission, 2001;
Public Law (P.L.) 108-446, 2004). Presently, studies of the
latent factor structure of the WISC-V have been restricted
to analyses of data from the standardization sample.
Although such studies are informative, the results provided
by such investigations may not generalize to clinical sam-
ples (Strauss, Sherman, & Spreen, 2006). Additionally,
independent analyses of the WISC-V standardization data
have contested the structure preferred by its publisher
(Beaujean, 2016; Canivez et al., 2016; Canivez, Watkins, &
Dombrowski, 2017; Dombrowski et al., 2015; Dombrowski
etal.,2017; Reynolds & Keith, 2017). Whereas these inves-
tigations have produced several plausible alternative mod-
els, it remains unclear which should be preferred. To provide
additional insight on these matters, the present study exam-
ined the latent factor structure of the 10 WISC-V primary
subtests with a large clinical sample and: (a) followed best
practices in EFA and CFA, (b) compared bifactor models
with higher-order models as rival explanations, (¢) exam-
ined decomposed factor variance sources in EFA and CFA,
and (d) estimated model-based reliabilities. Results from
these analyses are essential for users of the WISC-V to
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Table 1. Demographic Characteristics of the Clinical EFA and CFA Samples.

EFA Sample (n = 1,256)

CFA Sample (n = 1,256)

n % n %
Sex
Male 816 65.0 816 65.0
Female 440 35.0 440 35.0
Race/ethnicity
White/Caucasian 687 547 710 56.5
Black/African American 369 29.4 348 27.7
Asian American 41 3.3 36 2.9
Hispanic/Latino 28 2.2 56 4.5
Native American 3 0.2 2 0.2
Multiracial 94 75 75 6.0
Native Hawaiian/Pacific Islander | 0.1 0 0.0
Other 2 0.2 8 0.6
Unknown 31 2.5 21 1.7

Note. EFA = exploratory factor analysis; CFA = confirmatory factor analysis.

determine the value of the various scores and score com-
parisons provided in the WISC-V and interpretive guide-
lines emphasized by the publisher.

Method

Participants and Selection

A total of 2,512 children (65% male) between the ages of 6
and 16 years were administered the WISC-V as part of
assessments conducted in a large outpatient neuropsychol-
ogy clinic between October 2014 and February 2017. All
test data are routinely entered into the department’s clinical
database via the electronic medical record and securely
maintained by the hospital’s Information Systems
Department. Following approval from the hospital’s institu-
tional review board, the clinical database was queried and a
limited, de-identified data set was constructed of patients
for whom subtest scores from all 10 WISC-V primary sub-
tests were available. With regard to the referred nature of
the sample, billing diagnosis codes were queried to provide
descriptive information regarding presenting concerns.
Approximately 20% of cases were seen for primarily medi-
cal concerns (e.g., 21.2% epilepsy, 19.2% encephalopathy,
10.6% pediatric cancer diagnoses, 49% other congenital or
acquired conditions). Among the remaining 80% of cases
seen for mental health concerns, 58.9% were diagnosed
with attention-deficit hyperactivity disorder (ADHD),
14.0% with anxiety or depression, 7.2% with an adjustment
disorder, and 19.9% other.

The sample was randomly bifurcated into EFA and CFA
samples by sex. Table 1 presents demographic characteris-
tics of the EFA (n = 1,256) and CFA (n = 1,256) samples
with equal distributions of male and female participants.

The sample was primarily composed of White/Caucasian
and Black/African American youths. The ages of partici-
pants were similar in EFA (M = 10.63, SD = 2.74) and CFA
(M = 10.46, SD = 2.68) samples. Table 2 illustrates the
distribution of race/ethnicity across the 11 age groups of
WISC-V. Given the clinical nature of the sample, these data
do not represent the general public.

WISC-V descriptive statistics for the EFA and CFA sam-
ples are presented in Table 3 and show that average subtest
and composite scores were slightly below average, but
within 1 standard deviation of population means, as is typi-
cal in clinical samples. All subtests and composite scores
showed univariate normal distributions with no appreciable
skewness or kurtosis. However, Mardia’s (1970) multivari-
ate kurtosis estimates for the EFA sample (X> = 123.7) and
the CFA sample (X* = 128.5) indicated significant (p < .05)
multivariate nonnormality for both samples (Cain, Zhang,
& Yuan, 2017). There were no statistically significant sub-
test or composite score mean differences between the EFA
and CFA samples.

Instrument

The WISC-V (Wechsler, 2014a), is a test of general intelli-
gence composed of 16 subtests expressed as scaled scores
(M = 10, SD = 3). There are seven primary subtests
(Similarities [SI], Vocabulary [VO], Block Design [BD],
MR, FW, Digit Span [DS], and Coding [CD]) that produce
the Full Scale IQ (FSIQ) and three additional primary sub-
tests (VP, PS, and Symbol Search [SS]) used to produce the
five-factor index scores (two subtests each for Verbal
Comprehension Index[VCI], Visual Spatial Index [VSI],
Fluid Reasoning Index [FRI], Working Memory Index
[WMI], and Processing Speed Index [PSI]).
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Table 2. Sample Sizes of Race/Ethnicity by Age Group in the EFA and CFA Samples.

Age group (6-16 years)

6 7 8 9 10 I 12 13 14 I5 16
EFA sample (n = 1,256)
White/Caucasian 68 97 86 91 63 70 6l 63 43 39 6
Black/African American 23 40 37 47 37 36 40 41 32 28 8
Asian American 3 6 3 6 5 9 2 2 I 3 |
Hispanic/Latino | 4 5 6 5 2 | | I 0 2
Native American 0 0 0 0 | 0 0 2 0 0 0
Multiracial 8 14 15 13 13 10 7 5 6 3 0
Native Hawaiian/Pacific Islander 0 0 0 0 0 0 0 0 | 0 0
Other 0 0 0 | I 0 0 0 0 0 0
Unknown 0 4 3 8 3 2 5 I 4 | 0
CFA sample (n = 1,256)
White/Caucasian 77 95 104 94 83 63 62 46 49 37 0
Black/African American 30 35 47 42 47 48 33 21 28 17 0
Asian American 4 6 5 3 5 3 2 4 2 2 0
Hispanic/Latino 4 8 12 I 6 5 4 2 2 2 0
Native American 0 0 0 | 0 | 0 0 0 0 0
Multiracial 7 I 8 13 10 5 4 6 8 3 0
Native Hawaiian/Pacific Islander 0 0 0 0 0 0 0 0 0 0 0
Other 0 0 2 | 3 0 | 0 | 0 0
Unknown 0 0 2 | 5 2 4 I 2 4 0
Note. EFA = exploratory factor analysis; CFA = confirmatory factor analysis.
Table 3. Wechsler Intelligence Scale for Children—Fifth Edition (WISC-V) Descriptive Statistics for the Clinical EFA and CFA Samples.
EFA sample (n = 1,256) CFA sample (n = 1,256)
Subtest/Composite M SD Skewness Kurtosis M SD Skewness Kurtosis
Subtests
BD 8.77 3.30 0.11 -0.21 8.67 3.17 0.02 -0.12
N 893 3.25 -0.05 -0.07 9.07 3.29 -0.04 -0.05
MR 9.14 3.39 0.07 -0.04 8.97 3.37 0.00 -0.24
DS 8.05 3.04 0.13 0.20 7.90 3.09 0.11 0.02
CD 7.74 3.25 -0.06 -0.43 7.73 3.27 0.00 -0.15
VE 8.87 3.53 0.06 -0.42 8.89 3.49 0.03 -0.51
FW 9.45 3.15 -0.04 -0.31 9.51 3.14 -0.03 -0.29
VP 9.51 3.29 -0.04 -0.52 9.54 3.30 -0.01 -0.46
PS 8.59 3.14 0.17 -0.16 8.6l 3.03 0.06 -0.02
SS 8.19 3.20 0.0l 0.06 8.21 3.18 -0.07 0.05
Composites
VCI 94.09 17.21 -0.05 0.02 94.44 17.16 -0.05 -0.22
VSI 95.23 17.18 0.09 -0.15 94.96 16.70 0.00 0.03
FRI 95.93 16.73 0.05 -0.48 95.61 16.77 0.0l -0.43
WMI 90.26 15.44 0.21 0.09 89.89 15.40 0.09 -0.16
PSI 88.45 16.72 -0.18 -0.04 88.46 16.60 -0.22 0.22
FSIQ 91.09 16.90 -0.01 -0.24 90.91 16.90 -0.02 -0.29

Note. EFA = exploratory factor analysis; CFA = confirmatory factor analysis; Subtests: BD = Block Design; SI = Similarities; MR = Matrix Reasoning;
DS = Digit Span; CD = Coding; VO = Vocabulary; FW = Figure Weights; PS = Picture Span; SS Symbol Search VCI = Verbal Comprehension
Index; VSI = Visual Spatial Index; FRI = Fluid Reasoning Index; WMI = Working Memory Index; PSI = Processing Speed Index; FSIQ = Full Scale
1Q. Mardia’s (1970) multivariate kurtosis estimate (EQS 6.3) was 4.23 for the EFA sample and 9.7 for the CFA sample. Independent t tests for mean
differences of WISC-V subtests and composite scores between the EFA and CFA samples indicated no statistically significant differences with t values
ranging from —1.07 to 1.23 (p > .20).
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Inaddition, there are six secondary subtests (Information,
Comprehension, Picture Concepts, Arithmetic, Letter—
Number Sequencing, and Cancellation) that are used either
for substitution in FSIQ estimation (when one primary sub-
test is spoiled) or in estimating the General Ability Index
and Cognitive Proficiency Index and three newly created
Ancillary index scores (Quantitative Reasoning, Auditory
Working Memory, and Nonverbal). Ancillary index scores
(pseudofactors) are not, however, factorially derived and,
thus, were not examined in the present investigation. The
FSIQ and index scores are expressed as standard scores
(M = 100, SD = 15). Five new subtests (Naming Speed
Literacy, Naming Speed Quality, Immediate Symbol
Translation, Delayed Symbol Translation, and Recognition
Symbol Translation) combine to measure three Comple-
mentary Index scales (Naming Speed, Symbol Translation,
and Storage and Retrieval); but are not intelligence sub-
tests so may not be substituted for any of the primary or
secondary subtests.

Analyses

Exploratory Factor Analyses. Multiple criteria were used to
determine the number of factors to extract and retain: eigen-
values >1 (Kaiser, 1960), the scree test (Cattell, 1966),
standard error of scree (SE___ ; Zoski & Jurs, 1996), parallel
analysis (PA; Horn, 1965), Glorfeld’s (1995) modified PA,
and minimum average partials (MAP; Frazier & Young-
strom, 2007; Velicer, 1976). Simulation studies have found
that Horn’s parallel analysis and MAP are useful a priori
empirical criteria with scree sometimes a helpful adjunct
(Velicer, Eaton, & Fava, 2000; Zwick & Velicer, 1986).
Some criteria were estimated using SPSS 24 for Macintosh,
while others were computed with open source software.
The SE  program (Watkins, 2007) was used in scree anal-
ysis and Monte Carlo PCA for Parallel Analysis software
(Watkins, 2000) produced random eigenvalues for PA
using 100 iterations to provide stable estimates. Glorfeld’s
(1995) modified PA criterion utilized eigenvalues at the
95% confidence interval using the Cleigenvalue program
(Watkins, 2011). Typically, PA suggests retaining too few
factors when there is a strong general factor (Crawford
et al., 2010); therefore, the publisher’s theory was also
considered.

Principal axis extraction was employed to assess the
WISC-V factor structure using SPSS 24 for Macintosh fol-
lowed by Promax rotation (k = 4; Gorsuch, 1983). Following
Canivez and Watkins (2010a, 2010b), iterations in first-order
principal axis factor extraction were limited to two in esti-
mating final communality estimates (Gorsuch, 2003).

Factors were required to have at least two salient load-
ing subtests (=.30; Child, 2006) to be considered viable.
Variance apportionment of first- and second-order factors
was accomplished with the SL procedure (Schmid &

Leiman, 1957), which has been recommended by Carroll
(1993) and Gignac (2005) and has been used in numerous
Wechsler scale EFA studies: WISC-IV (Watkins, 2006;
Watkins, Wilson, Kotz, Carbone, & Babula, 2006),
WISC-V (Canivez et al., 2016; Dombrowski et al., 2015;
Dombrowski et al., 2017), WISC-IV Spanish (McGill &
Canivez, 2016), French WAIS-III (Golay & Lecerf, 2011),
French WISC-IV (Lecerf et al., 2011), and the French
WISC-V (Lecerf & Canivez, 2018). The SL procedure
derives a hierarchical factor model from higher-order
models and decomposes the variance of subtest scores first
to the general factor and then to the first-order factors and
is labeled SL bifactor (Reise, 2012) for convenience. The
first-order factors are orthogonal to each other and also to
the general factor (Gignac, 2006; Gorsuch, 1983). The SL
procedure is an approximate bifactor model (and labeled
SL bifactor for convenience) and was produced using the
MacOrtho program (Watkins, 2004).

Confirmatory Factor Analyses. EQS 6.3 (Bentler & Wu, 2016)
was used to conduct CFA using ML estimation. In the
WISC-V, each of the five latent factors (VC, VS, FR, WM,
and PS) have only two observed indicators and thus are
underidentified. Consequently, those subtests were con-
strained to equality in bifactor CFA models to ensure iden-
tification (Little, Lindenberger, & Nesselroade, 1999).
Given the significant multivariate kurtosis of the scores,
robust ML estimation with the Satorra and Bentler (S-B;
2001) corrected chi-square was applied. Byrne (2006) indi-
cated “the S-B X* has been shown to be the most reliable test
statistic for evaluating mean and covariance structure mod-
els under various distributions and sample sizes” (p. 138).

The structural models with the 10 WISC-V primary sub-
tests previously examined by Canivez, Watkins, and
Dombrowski (2017) were investigated (both higher-order
and bifactor models) with the present CFA clinical sample.
Model 1 is a unidimensional g factor model with all 10 pri-
mary subtests loading only on g. Table 4 illustrates the sub-
test associations within the various models. Models with
more than one group factor included a higher-order g factor
and models with four- and five-group factors included
higher-order and bifactor variants, including that suggested
by EFA.

Given that the large sample size may unduly influence
the X* value (Kline, 2016), approximate fit indices were
used to aid model evaluation and selection. While univer-
sally accepted criterion values for approximate fit indices
do not exist (McDonald, 2010), the comparative fit index
(CFI), Tucker-Lewis index (TLI), and the root mean square
error of approximation (RMSEA) were used to evaluate
overall global model fit. Higher values indicate better fit for
the CFI and TLI whereas lower values indicate better fit for
the RMSEA. Hu and Bentler’s (1999) combinatorial heuris-
tics were applied where CFI and TLI = .90 along with
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Table 4. Wechsler Intelligence Scale for Children—Fifth Edition (WISC-V) Primary Subtest Assignment to Theoretical First-Order

Group Factors for CFA Model Testing.

Two-factor Cattell-Horn—Carroll (CHC) five-factor
model Three-factor model Wechsler four-factor model model

\ P \ P PS vVC PR WM PS vC VS FR WM PS
S| BD N BD CD S| BD DS CD Sl BD MR DS CD
VO VP VO VP SS VO VP PS SS VO VP FW PS SS
DS MR DS MR MR

FW FW FW

PS PS

CD

SS

Note. CFA = confirmatory factor analysis; CHC = Cattell-Horn—Carroll; Factors: V = Verbal; P = Performance; PS = Processing Speed; VC = Verbal
Comprehension; PR = Perceptual Reasoning; WM = Working Memory; VS = Visual Spatial; FR = Fluid Reasoning. Subtests: S| = Similarities;
VO = Vocabulary; BD = Block Design; VP = Visual Puzzles; MR = Matrix Reasoning; FW = Figure Weights; DS = Digit Span; PS = Picture Span;

CD = Coding; SS = Symbol Search.

RMSEA =< .08 were criteria for adequate model fit; whereas
CFI and TLI = .95 and RMSEA =< .06 were criteria for
good model fit. The Akaike Information Criterion (AIC)
was also considered, but because AIC does not have a
meaningful scale, the model with the smallest AIC value
was preferred as most likely to replicate (Kline, 2016).
Superior models required adequate to good overall fit and
indication of meaningfully better fit (ACFI > .01, ARMSEA
> .015, AAIC > 10) than alternative models (Burnham &
Anderson, 2004; F. F. Chen, 2007; Cheung & Rensvold,
2002). Local fit was also considered in addition to global fit
as models should never be retained “solely on global fit
testing” (Kline, 2016, p. 461). The large sample size allowed
for sufficient statistical power to detect even small differ-
ences as well as more precise estimates of model
parameters.

Coefficients w_ and w__ were estimated as model-based
reliabilities and provide estimates of reliability of unit-
weighted scores produced by the indicators (Reise, 2012;
Rodriguez et al., 2016; Watkins, 2017). The w_ coefficient
is the general intelligence factor reliability estimate with
variability from the group factors removed, whereas the R
coefficient is the group factor reliability estimate with vari-
ability from all other group and general factors removed
(Brunner, Nagy, & Wilhelm, 2012; Reise, 2012). Omega
estimates (w, and u)HS) are calculated from CFA bifactor
solutions or decomposed variance estimates from higher-
order models and were obtained using the Omega program
(Watkins, 2013), which is based on the Brunner et al. (2012)
tutorial and the works of Zinbarg, Revelle, Yovel, and Li
(2005) and Zinbarg, Yovel, Revelle, and McDonald (2006).
However, o, and W coefficients should exceed .50, but
.75 might be preferred (Reise, 2012; Reise et al., 2013).
Omega coefficients were supplemented with Hancock and
Mueller’s (2001) construct reliability or construct replica-
bility coefficient (H), which estimates the adequacy of the

latent construct represented by the indicators, with a crite-
rion value of .70 (Hancock & Mueller, 2001; Rodriguez
et al., 2016). H coefficients were produced by the Omega
program (Watkins, 2013).

Results

WISC-V Exploratory Factor Analyses

The Kaiser—Meyer—Olkin Measure of Sampling Adequacy
of .902 far exceeded the minimum standard of .60 (Kaiser,
1974) and Bartlett’s Test of Sphericity (Bartlett, 1954),
X> = 6,372.06, p < .0001; indicated that the WISC-V cor-
relation matrix was not random. Initial communality esti-
mates ranged from .377 to .648. Therefore, the correlation
matrix was deemed appropriate for factor analysis.

Factor Extraction Criteria

Scree, SEscree, PA, Glorfeld’s modified PA, and MAP cri-
teria all suggested only one factor, while the eigenvalues
>1 criterion suggested two factors. The publisher of the
WISC-V, however, claims five factors and the traditional
Wechsler structure suggests four factors. Because Wood,
Tataryn, and Gorsuch (1996) noted that it is better to over-
extract than underextract, EFA began by extracting five fac-
tors to examine subtest associations with latent factors
based on the publisher’s promoted WISC-V structure. This
permitted the assessment of smaller factors and subtest
alignment. Models with four, three, and two factors were
then sequentially examined for adequacy.

Exploratory Factor Analyses Models

Five-Factor Model. When five WISC-V factors were
extracted followed by promax rotation, a fifth factor with
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Table 5. Exploratory Factor Analysis of the |0 Wechsler Intelligence Scale for Children—Fifth Edition (WISC-V) Primary Subtests:
Five Oblique Factor Solution With Promax Rotation (k = 4) for the Clinical EFA Sample (n = 1,256).

General Fl: PR F2: VC F3: PS F4: WM F5

WISC-V
Subtest S P S P S P S P S P S h?
NI .749 .049 619 778 .826 .048 476 -.036 .626 .031 376 .685
VO .746 .054 .624 173 .825 -.033 457 .080 .646 -.067 .307 .687
BD .760 816 .825 -.028 .580 .061 .528 -.01l1 551 -.001 .200 .683
VP .796 .854 .865 .042 .637 -.034 .503 .001 .576 .002 .230 .750
MR 719 597 713 -.031 .585 .029 479 .087 .578 249 426 577
FW .705 .582 .708 .158 619 -.028 424 -.022 .532 174 375 .552
DS .673 .019 .526 .160 .632 .019 .508 529 722 121 406 .552
PS 610 .032 490 .068 .532 .092 .524 .556 .670 -.058 216 460
CcD 567 -.019 439 —-.043 .392 .752 .755 .047 .536 .023 162 572
SS 618 .037 .500 .060 453 .745 772 -.034 .549 -.016 .148 .600
Eigenvalue 5.28 1.06 0.82 0.60 0.52
% Variance 48.72 6.19 4.27 1.39 0.60
Factor correlations Fl: PR F2: VC F3: PS F4: WM F5

Fl: PR —

F2: vC 716 —

F3: PS .600 .536 —

F4: WM .663 .750 .698 —

F5 252 434 191 393 —

Note. EFA = exploratory factor analysis; SI = Similarities; VO = Vocabulary; BD = Block Design; VP = Visual Puzzles; MR = Matrix Reasoning; FW =
Figure Weights; DS = Digit Span; PS = Picture Span; CD = Coding; SS = Symbol Search. PR = Perceptual Reasoning; VC = Verbal Comprehension;
PS = Processing Speed; WM = Working Memory; S = Structure Coefficient; P = Pattern Coefficient; h* = Communality. General structure
coefficients are based on the first unrotated factor coefficients (g loadings). Salient pattern coefficients (=.30) presented in bold.

no salient factor pattern coefficients resulted (see Table 5).
The BD, VP, MR, and FW subtests had salient pattern coef-
ficients on a common factor, but MR and FW did not share
sufficient common variance separate from BD and VP to
constitute separate FR and VS dimensions. Given that no
salient fifth factor emerged, the five-factor model was
judged inadequate.

Four-Factor Model. Table 6 presents the results from extrac-
tion of four WISC-V factors followed by promax rotation.
The g loadings ranged from .567 (CD) to .796 (VP) and all
were within the fair to good range based on Kaufman’s
(1994) criteria (=.70 = good, .50-.69 = fair, <.50 = poor).
Table 6 illustrates strong, well defined VC (SI and VO), PR
(BD, VP, MR, and FW), WM (DS and PS), and PS (CD and
SS) factors with theoretically consistent subtest associations
resembling the traditional WISC-IV structure. None of the
subtests had salient factor pattern coefficients on more than
one factor, thereby achieving desired simple structure. The
factor intercorrelations (.531 to .755) were moderate to high
and suggested the presence of a general intelligence factor
that should be further explicated (Gorsuch, 1983).

Two- and Three-Factor Models. Results from the two and
three WISC-V factor extractions with promax rotation are

presented in Table 7. For the three-factor model, the PR fac-
tor remained intact as the first factor but the second factor
was a merging of VC and WM factors. The PS factor
emerged as the third factor. When extracting only three fac-
tors the PS subtest cross-loaded on PR and PS factors. In the
two-factor model, Factor 1 included all subtests (except MR
and SS that had salient factor pattern coefficients on the sec-
ond factor along with CD). Coding also cross-loaded on
Factor 1. Thus, the two- and three-factor models clearly dis-
played fusion of theoretically meaningful constructs, sub-
test migration to alternate factors that would not be expected,
and cross-loadings. This appears to be due to underextrac-
tion, thereby rendering them unacceptable (Gorsuch, 1983;
Wood et al., 1996).

Hierarchical EFA: SL Bifactor Model

The EFA results indicated that the four-factor solution was
the most appropriate and was accordingly subjected to
higher-order EFA and transformed with the SL orthogonal-
ization procedure (see Table 8). Following SL transforma-
tion, all subtests were properly associated with their
theoretically proposed factors resembling the WISC-IV
(Wechsler model). The hierarchical g factor accounted for
42.4% of the total variance and 70.2% of the common
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Table 6. Exploratory Factor Analysis of the |10 Wechsler Intelligence Scale for Children—Fifth Edition (WISC-V) Primary Subtests:
Four Oblique Factor Solution With Promax Rotation (k = 4) for the Clinical EFA Sample (n = 1,256).

General Fl: PR F2: vC F3: PS F4: WM
WISC-V Subtest S P S P S P S P S h?
S| 749 .055 .639 .768 .825 .028 469 .002 .638 .683
VO 746 .051 .636 762 .826 -.010 453 .042 .646 .684
BD .760 .834 819 -.029 .582 .095 526 -.073 .538 677
VP .796 .873 861 .039 .638 .002 .501 —-.062 .566 744
MR 719 631 736 -.030 .579 -.027 470 209 .599 .560
FW .705 611 726 .156 615 -.068 417 .059 .549 .543
DS 673 .027 .552 .158 .628 .012 .501 .588 733 551
PS 610 .025 495 .067 532 151 523 .485 .653 444
CD 567 -.016 440 -.041 .393 739 .754 .071 519 571
SS 618 .038 498 .060 455 741 772 -.035 .528 .600
Eigenvalue 5.28 1.06 0.82 0.60
% Variance 48.72 6.19 4.27 1.39
Promax-based factor Fl: PR F2: vC F3: PS F4: WM
correlations
Fl: PR —
F2: VC 738 —
F3: PS 594 531 —
F4: WM .683 755 .663 —
Note. EFA = exploratory factor analysis; S| = Similarities; VO = Vocabulary; BD = Block Design; VP = Visual Puzzles; MR = Matrix Reasoning; FW
= Figure Weights; DS = Digit Span; PS = Picture Span; CD = Coding; SS = Symbol Search; S = Structure Coefficient; P = Pattern Coefficient; h*
= Communality; PR = Perceptual Reasoning; VC = Verbal Comprehension; PS = Processing Speed; WM = Working Memory. General structure
coefficients are based on the first unrotated factor coefficients (g loadings). Salient pattern coefficients (=.30) presented in bold.
Table 7. Exploratory Factor Analysis of the 10 Wechsler Intelligence Scale for Children—Fifth Edition (WISC-V) Primary Subtests:
Two and Three Oblique Factor Solutions for the Clinical EFA Sample (n = 1,256).
Two oblique factors Three oblique factors
WISC-V Subtest g Fl:g F2: PS h? g Fl: PR F2: VC/WM F3: PS h?
S| .754 .744 (.765) .031 (.528) 586 .748 .079 (.635) .781 (.809) —.052 (.473) .658
VO 739 .702 (.745) .065 (.533) .558 745 .070 (.631) .809 (.814) -.077 (.460) .667
BD 719 712 (.730) .028 (.503) 534 761 .828 (.820) -.074 (.59¢6) .080 (.530) .676
VP .668 466 (.641) 263 (.574) 450 797 .866 (.862) .009 (.649) -.018 (.506) 743
MR 569  -.070 (.458) 791 (.745) 557 718 .601 (.732) 135 (.617) .048 (491) .547
FW .735 713 (.744) .047 (.522) 555 705 599 (.725) 217 (.629) -.063 (.428) .544
DS .707 .786 (.735) —.076 (.447) 543 670 .000 (.544) 577 (.690) .185 (.538) 498
PS 792 .858 (.819) -.058 (.514) .673  .608 .001 (.489) 411 (.595) .300 (.552) 410
CD .609 .324 (.565) .362 (.578) 392 568 -.010(436) —.022 (.444) 774 (.754) .569
SS .620 .020 (.516) .744 (.758) 574 618 .054 (.495) .007 (.493) 727 (.764) .585
Eigenvalue 5.28 1.06 5.28 1.06 0.82
% Variance 48.25 5.97 48.65 6.15 4.19
Factor correlations Fl F2 Fl F2 F3
Fl — Fl —
F2 .667 — F2 751 —
F3 .598 612 —

Note. EFA = exploratory factor analysis; S| = Similarities; VO = Vocabulary; BD = Block Design; VP = Visual Puzzles; MR = Matrix Reasoning;
FW = Figure Weights; DS = Digit Span; PS = Picture Span; CD = Coding; SS = Symbol Search; g = general intelligence; PS = Processing Speed;
WM = Working Memory; h* = Communality; PR = Perceptual Reasoning; VC = Verbal Comprehension; PS = Processing Speed; WM = Working
Memory; P = Pattern Coefficient.

*General structure coefficients based on first unrotated factor coefficients (g loadings). Factor pattern coefficients (structure coefficients) based on

principal factors extraction with promax rotation (k = 4). General structure coefficients are based on the first unrotated factor coefficients (g loadings).
Salient pattern coefficients presented in bold (pattern coefficient =.30).
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Table 8. Sources of Variance in the Wechsler Intelligence Scale for Children—Fifth Edition (WISC-V) 10 Primary Subtests for the
Clinical EFA Sample (n = 1,256) According to an Exploratory Bifactor Model (Orthogonalized Higher-Order Factor Model) With Four

First-Order Factors.

General Fl: PR F2: VC F3: PS F4: WM
WISC-V Subtest b s? b s? b s? b s? b s? h? u?
S| 714 510 .03 .00l 413 A71 020 .000 .00l .000 .682 .318
\Ye) 714 510 .029 .00l 410 .168 -007 000 .021 .000 679 .32l
BD 667 445 471 222 -0l16 .000 067 004 -036 .00l 673 327
VP 700 490  .493 .243 021 .000 001 .000 -.030 .00l 734 266
MR 658 433 357 .127 -0l6 000 -019 .000 .102 .010 571 .429
FwW 639 408  .345 .119 .084 007 -048 002 .029 .00 538 462
DS 677 458 015  .000 .085 .007 009 .000 .288 .083 549 45|
PS 606 367 014 .000 036 .001 107 011 237 .056 436 564
CcD 535 286 -.009 .000 -.022 .000 524 275 035 .00l 563 437
SS 574 329 .02 .000 032 001 526 .277 -017 000 .608 .392
TV 424 071 036 .057 015 603 397
ECV 702 118 .059 .095 026
i) 921 867 8l 738 655
0 /0, 821 270 194 351 .083
Relative o 891 311 238 476 127
H 883 505 280 435 d16
PUC .800

Note. EFA = exploratory factor analysis; PR = Perceptual Reasoning; VC = Verbal Comprehension; PS = Processing Speed; WM = Working Memory; S|
= Similarities; VO = Vocabulary; BD = Block Design; VP = Visual Puzzles; MR = Matrix Reasoning; FW = Figure Weights; DS = Digit Span; PS = Picture
Span; CD = Coding; SS = Symbol Search; TV = Total Variance; ECV= Explained Common Variance; b = loading of subtest on factor; $* = variance
explained; h* = Communality; u* = Uniqueness; » = Omega; o, = Omega-hierarchical (general factor);  ,. = Omega-hierarchical subscale (group

factors); H = construct reliability or replicability index;

PUC = percentage of uncontaminated correlations. Bold type indicates highest coefficients and variance estimates and consistent with the theoretically

proposed factor.

variance. The general factor also accounted for between
28.6% (CD) and 51.0% (SI and VO) of individual subtest
variability.

The PR group factor accounted for an additional 7.1%
and 11.8%, VC an additional 3.6% and 5.9%, PS an addi-
tional 5.7% and 9.5%, and WM an additional 1.5% and 2.6%
of the total and common variance, respectively. The general
and group factors combined to measure 60.3% of the com-
mon variance in WISC-V scores, leaving 39.7% unique vari-
ance (a combination of specific and error variance).

Based on SL results in Table 8, o, and o__ coefficients
were estimated. The general intelligence o, coefficient
(.821) was high and indicated that a unit-weighted compos-
ite score based on the indicators would be sufficient for
scale interpretation; however, the group factor (PR, VC, PS,
WM) o coefficients were considerably lower (.083-
.351). This suggests that unit-weighted composite scores
based on the four WISC-V group factors’ indicators would
likely contain too little true score variance for clinical inter-
pretation (Reise, 2012; Reise et al., 2013). Table 8§ also pres-
ents H coefficients which reflect the correlation between the
latent factor and optimally weighted composite scores
(Rodriguez et al., 2016). The H coefficient for the general
factor' (.883) signaled that the general factor was well
defined by the 10 WISC-V primary subtest indicators and

was a good indicator of construct reliability or replicability
(Rodriguez et al., 2016); but the H coefficients for the four
group factors ranged from .116 to .505 and suggested that
the four group factors were inadequately defined by their
subtest indicators.

Table 9 presents decomposed variance estimates from
the SL bifactor solution of the second-order EFA with the
forced five-factor extraction. Like the first-order EFA, sub-
tests purported to measure FR (MR and FW) had their larg-
est portions of residual variance apportioned to the PR
factor along with BD and VP subtests. The MR and FW
subtests also had small amounts of residual variance appor-
tioned to the fifth factor (5.2% and 2.5%, respectively).
These portions of unique residual variance appear to be the
result of diverting small amounts of variance from the gen-
eral intelligence factor. Another indication of the extremely
poor measurement of the fifth factor is the R coefficient
of .052 which indicates that a unit-weighted composite
score based on MR and FW subtests would account for a
meager 5.2% true score variance.

Confirmatory Factor Analyses

Results of CFA for the 10 WISC-V primary subtests with
the CFA clinical sample are presented in Table 10. The
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Table 9. Sources of Variance in the |10 Wechsler Intelligence Scale for Children—Fifth Edition (WISC-V) Primary Subtests for the
Clinical EFA Sample (n = 1,256) According to an Exploratory SL Bifactor Model (Orthogonalized Higher-Order Factor Model) With
Five First-Order Factors.

General FI: PR F2: VC F3: PS F4: WM F5
WISC-V Subtest b s? b % b s? B s? b s? b s? h? u?
S| 718 516 030 .00l 405 .164 034 00l -0l16 .000 .028 .00l .683 317
VO 724 524 033 .00l 402 162 -.023 .00l 037 001 -.061 .004 .692 .308
BD 653 426 501 .251 -0I5 .000 .043 .002 -.005 .000 -.00 .000 .680 .320
VP 687 472 525 276 022 .000 -.024 .00l 000 .000 .002 .000 .749 251
MR 642 412 367 .135 -0l6 .000 .020 000 .040 .002 228 .052 .60l .399
FW 624 389 358 .128 082 .007 -.020 000 -.0l0 .000 .I59 .025 .550 .450
DS 684 468 012 .000 083 007 013 000 .242 .059 .IIl 012 546 .454
PS 620 384 020 .000 035 .00l 065 004 .255 .065 -.053 .003 458 .542
CcD 533 284 -012 000 -022 .000 .530 .281 .022 .000 .021 .000 .567 .433
SS 573 328 023 .00l 031 .00l 525 276 -0l6 000 -0I5 .000 .606 .394
Total $? 420 .079 034 .057 013 010 613 .387
ECV 686 129 .056 092 021 0l6
oo, 821 270 194 351 .083
o fo,” 849 .308 194 351 .083 .052

Note. EFA = exploratory factor analysis; SL = Schmid—Leiman bifactor; WISC-V = Wechsler Intelligence Scale for Children—Fifth Edition; SI = Similarities;
VO = Vocabulary; BD = Block Design; VP = Visual Puzzles; MR = Matrix Reasoning; FW = Figure Weights; DS = Digit Span; PS = Picture Span;

CD = Coding; SS = Symbol Search; PR = Perceptual Reasoning; VC = Verbal Comprehension; PS = Processing Speed; WM = Working Memory;

ECV = Explained Common Variance; o, = Omega-hierarchical (general factor); . = Omega-hierarchical subscale (group factors); b = loading of subtest
on factor; §? = variance explained; h* = Communality; u?> = Uniqueness. Bold type indicates highest coefficients and variance estimates.

*Matrix Reasoning and Figure Weights included on Factor | (Perceptual Reasoning). ®Matrix Reasoning and Figure Weights included on Factor 5
(supposedly Fluid Reasoning).

Table 10. Robust Maximum Likelihood CFA Fit Statistics for 10 WISC-V Primary Subtests for the Clinical CFA Sample (n = 1,256).

Model* SBX> df  CF TLI  RMSEA  RMSEA 90% Cl AIC

I (g 89833 35 839 792 140 [.132, .148] 59,650.94
2° (V,P) 59404 33 895  .857 116 [.108, .125] 59,321.48
3 (V,P,PS) 36142 32 938 913 091 [.082, .099] 59,037.53
4a Higher-order (VC, PR, WM, and PS) 17066 31 974 962 060 [.051, .069] 58,831.45
4b Bifactor® (VC, PR, WM, and PS) 14420 28  .978  .965 .058 [.048, .067] 58,813.56
5a Higher-order (VC, VS, FR, WM, and PS) 21684 30  .965  .948 070 [.062, .079] 58,886.17
5b Bifactor® (VC, VS, FR, WM, and PS) 21684 30 965 948 070 [.062, .079] 58,886.17

Note. WISC-V = Wechsler Intelligence Scale for Children—Fifth Edition; CFA = confirmatory factor analysis; S-B = Satorra—Bentler; df = degrees of freedom;
CFl = comparative fit index; TLI = Tucker—Lewis index; RMSEA = root mean square error of approximation; Cl = confidence interval; AIC = Akaike’s
Information Criterion; g = general intelligence; V = Verbal; P = Performance; PS = Processing Speed; VC = Verbal Comprehension; PR = Perceptual
Reasoning; WM = Working Memory; VS = Visual Spatial; FR = Fluid Reasoning. Bold text illustrates best fitting model. Mardia’s multivariate kurtosis estimate
was 9.71 indicating multivariate nonnormality and need for robust estimation. All models were statistically significant (p << .001).

*Model numbers correspond to those reported in the WISC-V Technical and Interpretive Manual and are higher-order models (unless otherwise
specified) when more than one first-order factor was specified. "EQS condition code indicated Factor 2 (Performance) and the higher-order factor
(g) were linearly dependent on other parameters so variance estimate set to zero for model estimation and loss of | df. VC, WM, and PS factor
subtest loadings were constrained to equality to identify the bifactor version of Model 4b due to underidentified latent factors (VC, WM, and PS).
c'VC, VS, FR, WM, and PS factor subtest loadings were constrained to equality to identify the bifactor version of Model 4b due to underidentified latent
factors (VC, VS, FR, WM, and PS). Due to constraining each factor’s loadings to equality because of underidentified latent factors (VC, VS, FR, WM,
and PS), bifactor Model 5b is mathematically equivalent to higher-order Model 5a.

combinatorial heuristics of Hu and Bentler (1999)
revealed that Model 1 (g) and Model 2 (V, P) were inad-
equate due to low CFI and TLI and high RMSEA values.
Model 3 (V, P, and PS) was inadequate due to high
RMSEA values. Both models with four group factors
reflecting traditional Wechsler (VC, PR, WM, and PS)

configurations, 4a higher-order (see Figure 2) and 4b
bifactor (see Figure 3), were well fitting models to these
data. Both models with five group factors reflecting CHC
(VC, VS, FR, WM, and PS) configurations, 5a higher-
order (see Figure 2) and 5b bifactor (see Figure 3), were
also adequate fitting models to these data.
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Figure 2. Higher-order measurement models (4a [Wechsler model] and 5a [CHC model]), with standardized coefficients, for the 10

WISC-V primary subtests with the clinical CFA sample (n = 1,256).

Note. CHC = Cattell-Horn—Carroll; WISC-V = Wechsler Intelligence Scale for Children—Fifth Edition; CFA = confirmatory factor analysis; SI =
Similarities; VO = Vocabulary; BD = Block Design; VP = Visual Puzzles; MR = Matrix Reasoning; FW = Figure Weights; DS = Digit Span; PS =

Picture Span; CD = Coding; SS = Symbol Search.
*p < .05.

Assessment of local fit for all models with four and five
group factors indicated statistically significant standard-
ized path coefficients and there were no problems identi-
fied with impermissible parameter estimates. Model 4a
higher-order and Model 4b bifactor were not meaningfully
different based on global fit statistics, but the bifactor
model had the lower AIC index, which exceeded the AAIC
> 10 criterion (Burnham & Anderson, 2004). Because
CHC-based WISC-V models with 10 primary subtests are
underidentified, Model 5a higher-order and Model 5b

bifactor were mathematically equivalent (see Table 10).
Based on the AAIC > 10 criterion (Burnham & Anderson,
2004), the Wechsler higher-order model (Model 4a) was
superior to the CHC higher-order model (Model 5a) and
the Wechsler bifactor model (Model 4b) was superior to
the CHC bifactor model (Model 5b) and thus more likely
to replicate.

According to the AAIC > 10 criterion, the best fitting
model was the Wechsler-based Model 4b bifactor, which
was also consistent with the present EFA results. Table 11
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Figure 3. Bifactor measurement models (4b bifactor [Wechsler model] and 5b bifactor [CHC model]), with standardized
coefficients, for the 10 WISC-V primary subtests with the clinical CFA sample (n = 1,256).

Note. CHC = Cattell-Horn—Carroll; WISC-V = Wechsler Intelligence Scale for Children—Fifth Edition; CFA = confirmatory factor analysis; SI =
Similarities; VO = Vocabulary; BD = Block Design; VP = Visual Puzzles; MR = Matrix Reasoning; FW = Figure Weights; DS = Digit Span; PS =

Picture Span; CD = Coding; SS = Symbol Search.
*p < .05.

presents sources of variance for Model 4b bifactor from the
10 WISC-V primary subtests. The general intelligence
dimension accounted for most of the subtest variance and
substantially smaller portions of subtest variance were
uniquely associated with the four WISC-V group factors
(except for CD and SS). w, and CHIN coefficients estimated
using bifactor results from Table 11 found the o, coeffi-
cient for general intelligence (.836) was high and indicated
a unit-weighted composite score based on the 10 subtest
indicators would produce 83.6% true score variance. The
CH coefficients for the four WISC-V factors (VC, PR,
WM, and PS) were considerably lower ranging from .100

(WM) to .397 (PS). Thus, unit-weighted composite scores
for the four WISC-V first-order factors possess too little
true score variance to recommend clinical interpretation
(Reise, 2012; Reise et al., 2013). Table 11 also presents H
coefficients that reflect correlations between the latent fac-
tors and optimally weighted composite scores (Rodriguez
etal., 2016). The H coefficient for the general factor' (.895)
indicated the general factor was well defined by the 10
WISC-V subtest indicators, but the H coefficients for the
four group factors ranged from .144 to .484 and, as with the
EFA sample, indicated that the four group factors were not
adequately defined by their subtest indicators.
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Table I1. Sources of Variance in the Wechsler Intelligence Scale for Children—Fifth Edition (WISC-V) 10 Primary Subtests for the
Clinical CFA Sample (n = 1,256) According to a Bifactor Model With Four Group Factors.

General VC PR WM PS
WISC-V Subtest b s? b s? b s? b s? b s? h? u?
S| 711 506 472 223 728 272
VO 735 540 445 .198 738 262
BD 637 406 499 249 655  .345
VP 711 506 477 228 733 267
MR 679 461 320 .102 563 437
FwW 692 479 287 082 561 439
DS 761 579 276 076 655 345
PS 632 399 281 .079 478 522
CcD 521 271 557 310 582 418
SS 553 306 573 328 634 366
TV 445 042 066 016 064 633 367
ECV 704 066 .104 025 .10l
o 930 846 869 722 756
/o 836 243 220 .100 397
Relative @ 899 287 253 .138 525
H 895 348 454 144 484
PUC .800

Note. CFA = confirmatory factor analysis; EFA = exploratory factor analysis; PR = Perceptual Reasoning; VC = Verbal Comprehension; PS = Processing
Speed; WM = Working Memory; SI = Similarities; VO = Vocabulary; BD = Block Design; VP = Visual Puzzles; MR = Matrix Reasoning; FW = Figure
Weights; DS = Digit Span; PS = Picture Span; CD = Coding; SS = Symbol Search; TV = Total Variance; ECV= Explained Common Variance; b = loading
of subtest on factor; S* = variance explained; h* = Communality; u? = Uniqueness; = Omega; », = Omega-hierarchical (general factor);

H

Discussion

The present WISC-V EFA and CFA results with a large clin-
ical sample bifurcated into EFA and CFA samples provided
replication of independent WISC-V EFA and CFA results
previously reported with the standardization sample
(Canivez et al., 2016; Canivez, Watkins, & Dombrowski,
2017; Dombrowski et al., 2015; Dombrowski et al., 2017).
EFA results with the present clinical sample did not identify
the five latent WISC-V factors specified by the publisher
because the VS and FR factors did not emerge as separate
and distinct dimensions. Subtests thought to measure dis-
tinct VS and FR factors shared variance associated with a
single PR dimension similar to the former WISC-IV.
Furthermore, hierarchical EFA and Schmid and Leiman
(1957) orthogonalization replicated the dominance of the
general intelligence factor and the limited unique measure-
ment of the four group factors; the general factor accounted
for more than 5.9 times as much common subtest variance
as any individual WISC-V group factor and about 2.4 times
as much common subtest variance as all four WISC-V group
factors combined. Despite publisher claims of five group
factors as well as scoring and interpretive guidelines for five
factors, independent EFA of the WISC-V standardization
sample and the present clinical sample supports only four
factors. These results are also consistent with an indepen-
dent EFA examinations of the French WISC-V (Wechsler,

o, = Omega-hierarchical subscale (group factors); H = construct reliability or replicability index; PUC = percentage of uncontaminated correlations.

2016b) standardization sample (Lecerf & Canivez, 2018)
and WISC-VY® (Wechsler, 2016a) standardization sample
(Canivez et al., 2018).

CFA results with the present clinical sample generally
paralleled those of previous independent CFA of the
WISC-V standardization sample (Canivez, Watkins, &
Dombrowski, 2017), although in the present clinical sam-
ple, models with five group factors did not produce model
specification errors and improper parameter estimates.
Consistent with the present EFA results, the best fitting
CFA measurement model was the traditional four-factor
Wechsler model in a bifactor structure. While a CHC-based
bifactor model provided adequate fit, standardized coeffi-
cients for MR and FW were higher with the PR factor
(Wechsler model) than they were with the FR factor (CHC
model) where they were weak (see Figure 3). Like the EFA
results, the assessment of variance sources from the
Wechsler-based bifactor model (Model 4b) showed the
dominance of the general intelligence factor and the lim-
ited unique measurement of the four group factors. The
subtest variance apportions indicated that the general fac-
tor accounted for more than 6.75 times as much common
subtest variance as any individual WISC-V group factor
and about 2.4 times as much common subtest variance as
all four WISC-V group factors combined. The present CFA
results are consistent with independent CFAs of standard-
ization samples from the Canadian WISC-V (WISC-V"Y;
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Wechsler, 2014b), WISC-V"" (Wechsler, 2015), French
WISC-V, and WISC-V'* (Canivez et al., 2018; Fenollar-
Cortés & Watkins, 2019; Lecerf & Canivez, 2018; Watkins
etal., 2018).

Model-based reliability estimates (w, and wHS) and
construct reliability or construct replicability coefficients
(H) from both EFA and CFA results of the bifactor mod-
els indicated that while the broad g factor would allow
confident individual interpretation (EFA o = .811, CFA
w, =.829, EFAH = .883, CFA H = .895), the w and H
estimates for the four WISC-V group factors were unac-
ceptably low (see Tables 8 and 11), and thus extremely
limited for measuring unique cognitive constructs
(Brunner et al., 2012; Hancock & Mueller, 2001; Reise,
2012; Rodriguez et al., 2016).

Similar EFA and CFA results have also been observed in
studies of the WISC-1V (Bodin, Pardini, Burns, & Stevens,
2009; Canivez, 2014a; Keith, 2005; Watkins, 2006, 2010;
Watkins et al., 2006) and with other versions of Wechsler
scales (Canivez et al., 2018; Canivez & Watkins, 2010a,
2010b; Canivez, Watkins, Good, James, & James, 2018;
Fenollar-Cortés & Watkins, 2019; Gignac, 2005, 2006;
Golay & Lecerf, 2011; Golay, Reverte, Rossier, Favez, &
Lecerf, 2013; Lecerf & Canivez, 2018; McGill & Canivez,
2016, 2018a; Watkins & Beaujean, 2014; Watkins, Canivez,
James, Good, & James, 2013; Watkins et al., 2018), so these
results are not unique to the WISC-V. While some of these
studies were of standardization samples, some EFA and
CFA studies were of clinical samples (Bodin et al., 2009;
Canivez, 2014a; Canivez, Watkins, Good, et al., 2017;
Watkins, 2010; Watkins et al., 2006; Watkins et al., 2013).
Furthermore, similar results have been reported with the
Differential Ability Scales (DAS; Cucina & Howardson,
2017); DAS-II (Canivez & McGill, 2016; Dombrowski,
Golay, McGill, & Canivez, 2018; Dombrowski, McGill,
Canivez, & Peterson, 2019), Kaufman Adolescent and
Adult Intelligence Test (Cucina & Howardson, 2017),
Kaufman Assessment Battery for Children (KABC; Cucina
& Howardson, 2017), KABC-2 (McGill & Dombrowski,
2018b), Stanford—Binet—Fifth Edition (SB-5; Canivez, 2008;
DiStefano & Dombrowski, 2006), Wechsler Abbreviated
Scale of Intelligence and Wide Range Intelligence Test
(Canivez, Konold, Collins, & Wilson, 2009), Reynolds
Intellectual Assessment Scales (Dombrowski, Watkins, &
Brogan, 2009; Nelson & Canivez, 2012; Nelson, Canivez,
Lindstrom, & Hatt, 2007), Cognitive Assessment System
(Canivez, 2011), Woodcock-Johnson III (Cucina &
Howardson, 2017; Dombrowski, 2013, 2014a, 2014b;
Dombrowski & Watkins, 2013; Strickland, Watkins, &
Caterino, 2015), and the Woodcock-Johnson IV Cognitive
and full battery (Dombrowski, McGill, & Canivez, 2017a,
2017b), so results of domination of general intelligence and
limited unique measurement of group factors are not unique
to Wechsler scales. These results and the advantages of

bifactor modeling for understanding test structure (Canivez,
2016; Cucina & Byle, 2017; Gignac, 2008; Reise, 2012)
indicate that comparisons of bifactor models to the higher-
order models are needed.

Within CFA models, a higher-order representation of
intelligence test structure is an indirect hierarchical model
(Gignac, 2005, 2006, 2008) and the first-order factors fully
mediate the subtest influences of the g factor to influence
subtests indirectly (Yung, Thissen, & McLeod, 1999). The
higher-order model conceives of g as a superordinate factor
and as Thompson (2004) noted, g would be an abstraction
from abstractions. While higher-order models have been
most commonly applied to assess “construct-relevant psy-
chometric multidimensionality” (Morin, Arens, & Marsh,
2016, p. 117) of intelligence tests, the alternative bifactor
model was originally specified by Holzinger and Swineford
(1937) and has been referred to as a direct hierarchical
(Gignac, 2005, 2006, 2008) or nested factors model
(Gustafsson & Balke, 1993). In bifactor models, g is con-
ceptualized as a breadth factor (Gignac, 2008) because both
the general (g) and the group factors directly influence the
subtests and are at the same level of inference. Both g and
first-order group factors are simultaneous abstractions
derived from the observed subtest indicators and therefore
should be considered a more parsimonious and less compli-
cated conceptual model (Canivez, 2016; Cucina & Byle,
2017; Gignac, 2008). In bifactor models, the general factor
direct subtest indicator influences are easy to interpret, both
general and specific subtest influences can be simultane-
ously examined, and the psychometric properties necessary
for determining scoring and interpretation of subscales can
be directly examined (Canivez, 2016; Reise, 2012).

Bifactor and higher-order representations of intelligence
have generated scholarly debate and varying perspectives.
Some have questioned the appropriateness of bifactor mod-
els of intelligence on theoretical grounds. Reynolds and
Keith (2013) stated that “we believe that higher-order mod-
els are theoretically more defensible, more consistent with
relevant intelligence theory (e.g., Jensen, 1998), than are
less constrained hierarchical [bifactor] models” (p. 66). In
contrast, Gignac (2006, 2008) argued that general intelli-
gence is the most substantial factor of a battery of tests and
subtest influences should be directly modeled and it is the
higher-order model that demands explicit theoretical justifi-
cation of the full mediation of general intelligence by the
group factor. Carroll (1993, 1995) pointed out that subtest
scores reflect variation on both a general and a more spe-
cific group factor, so while subtest scores may appear reli-
able, the reliability is primarily a function of the general
factor, not the specific group factor. Other researchers have
indicated that the bifactor model better represents
Spearman’s (1927) and Carroll’s (1993) conceptualizations
of intelligence (Beaujean, 2015; Brunner et al., 2012; Frisby
& Beaujean, 2015; Gignac, 2006, 2008; Gignac & Watkins,
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2013; Gustafsson & Balke, 1993). Beaujean (2015) elabo-
rated that Spearman’s conception of general intelligence
was of a factor “that was directly involved in all cognitive
performances, not indirectly involved through, or mediated
by, other factors” (p. 130) and also pointed out that “Carroll
was explicit in noting that a bi-factor model best represents
his theory” (p. 130). The present results (both EFA and
CFA) seem to support Carroll’s theory due to the large con-
tributions of g in WISC-V measurement and further support
previous commentary by Cucina and Howardson (2017)
who also concluded that their analyses supported Carroll
but not Horn—Cattell.

Murray and Johnson (2013) suggested that bifactor mod-
els might better account for unmodeled complexity when
compared with higher-order models and thus benefit from
statistical bias in favor of the bifactor model. Morgan,
Hodge, Wells, and Watkins (2015) found that both bifactor
and higher-order models produced good model fit in simu-
lations regardless of the true test structure. Mansolf and
Reise (2017) distinguished higher-order and bifactor mod-
els in terms of tetrad constraints, indicating that while all
models impose rank constraints, higher-order models con-
tain unique tetrad constraints not present in a bifactor
model. Mansolf and Reise noted that when tetrad constraints
are violated, goodness-of-fit statistics are biased in favor of
the bifactor model but a technical solution does not appear
to be available. Systematic bias favoring the bifactor model
was not found by Canivez, Watkins, Good, et al. (2017) in
their investigation of the WISC-IVUX,

Some have argued (e.g., Reynolds & Keith, 2017) that
the bifactor model may not be appropriate for cognitive data
that might deviate from desired simple structure as bifactor
models assume factor orthogonality and subtest indicator
loadings on only one group factor. Subtest cross-loadings,
intermediate factors, and correlated disturbance and/or
error terms are frequently added to CFA models produced
by researchers preferring a higher-order structure for
Wechsler scales. However, such parameters are rarely spec-
ified a priori and unmodeled complexities are later added
iteratively in the form of post hoc model modifications
designed to improve model fit or remedy local fit problems”
(e.g., Heywood cases). Specification of these parameters
may be problematic due to lack of conceptual grounding in
previous theoretical work, lack of consideration of earlier
EFA, and dangers of hypothesizing after results are known
(HARKing; Cucina & Byle, 2017). These CFA method-
ological concerns were also noted by Horn (1989):

“At the present juncture of history in the study of human
abilities, it is probably overly idealistic to expect to fit
confirmatory models to data that well represent the complexities
of human cognitive functioning: too much is unknown. Even
when we can, a priori, specify a multiple-variable model that
fits data in a general way—with chi-square three or four times

as large as the number of degrees of freedom (df)—we cannot
anticipate all the small loadings that must be in a model for a
particular sampling of variables and subjects if the model is to
‘truly’ fit data” (p. 39).

Horn continued, “The statistical demands of structure equa-
tion theory are stringent. If there is tinkering with results to
get a model to fit, the statistical theory, and thus the basis
for strong inference, goes out the window” (p. 39). Horn
(1989, p. 40) also noted that if there was overuse of post hoc
model modifications then “ . . . one should not give any
greater credence to results from modeling analyses than one
can give to results from comparably executed factor ana-
lytic studies of the older variety” (e.g., EFA). Previous post
hoc attempts with the WAIS-IV (Weiss, Keith, Zhu, &
Chen, 2013a) and the WISC-IV (Weiss, Keith, Zhu, &
Chen, 2013b) were reported, but numerous psychometric
difficulties with the proposed higher-order models includ-
ing five group factors in both the WAIS-IV and WISC-IV
were pointed out by Canivez and Kush (2013).

Although there is debate regarding which model (bifac-
tor or higher-order) is the “correct” model to represent intel-
ligence, Murray and Johnson (2013) concluded that if there
is an attempt to estimate or account for domain-specific
abilities, the “bifactor model factor scores should be pre-
ferred” (p. 420). By providing factor index scores, compari-
sons between factor index scores, and suggestions of
interpretation of meaning of these scores and comparisons,
the WISC-V publisher emphasizes such domain-specific
abilities. Thus, the bifactor model is critical in evaluation of
the WISC-V construct validity because of publisher claims
of what factor index scores measure as well as the numer-
ous factor index score comparisons and inferences derived
from such comparisons. Researchers and clinicians must
consider empirical evidence of how well WISC-V group
factor scores (domain-specific) uniquely measure the repre-
sented construct independent of the general intelligence (g)
factor score (F. F. Chen, Hayes, Carver, Laurenceau, &
Zhang, 2012; F. F. Chen, West, & Sousa, 2006). A bifactor
model, which contains a general factor but permits multidi-
mensionality, is better than the higher-order model for
determining the relative contribution of group factors inde-
pendent of the general intelligence factor (Reise, Moore, &
Haviland, 2010).

A final note regarding the poor unique contributions to
measurement by the four broad WISC-V factors is that
there are implications for clinical application. Use of ipsa-
tive or pairwise comparisons of WISC-V factor index scores
as reflections of processing strengths or weaknesses (PSWs)
within CHC or other interpretation schemes does not con-
sider the fact that such index scores conflate general intel-
ligence with group factor variance and in most instances g
is the dominant contributor of reliable variance and little
unique true score variance is provided by broad factor.
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Longitudinal stability of such PSWs (see Watkins &
Canivez, 2004) or diagnostic and treatment utility of such
WISC-V PSWs has yet to be demonstrated, but given the
limited portions of unique measurement factor index scores
provide, such evidence may be elusive.

Limitations

The present study examined EFA and CFA of the WISC-V
with heterogeneous clinical samples but it is possible that
specific clinical groups (ADHD, SLD, etc.) might produce
somewhat different results. Furthermore, specific clinical
groups at different ages might also show varied EFA and
CFA so examination of structural invariance across age
within specific clinical groups would also be useful. Other
demographic variables where invariance should be exam-
ined include sex/gender, race/ethnicity, and socioeconomic
status; which is the next step in examining these data. H.
Chen et al. (2015) examined structural invariance across
gender with the WISC-V, but bifactor models and models
with fewer than five group factors were not examined so
invariance of alternative models should also be examined
across demographic groups among clinical samples. Finally,
the results of the present study only pertain to the latent fac-
tor structure and do not answer other WISC-V construct
validity questions. Latent class analysis or latent profile
analysis might be useful to identify if the WISC-V is able to
identify various clinical groups that might differ from nor-
mative samples. Furthermore, examinations of WISC-V
relations to external criteria such as incremental predictive
validity (Canivez, 2013a; Canivez, Watkins, James, James,
& Good, 2014; Glutting, Watkins, Konold, & McDermott,
2006) should be conducted to determine if reliable achieve-
ment variance is incrementally accounted for by the
WISC-V factor index scores beyond that accounted for by
the FSIQ (or through latent factor scores, see Kranzler,
Benson, and Floyd [2015]). Diagnostic utility (see Canivez,
2013b) studies should also be examined because of the use
of the WISC-V in clinical decision making. The small por-
tions of true score variance uniquely contributed by the
group factors in the WISC-V standardization sample
(Canivez et al., 2016; Canivez, Watkins, & Dombrowski,
2017) and in the present clinical sample might make it
unlikely that the WISC-V factor index scores would pro-
vide meaningful value.

Conclusion

Based on the present results with a large clinical sample, the
WISC-V appears to be overfactored when extracting five
factors and the strong replication of previous EFA and CFA
findings with the WISC-V (Canivez et al., 2016; Canivez,
Watkins, & Dombrowski, 2017; Dombrowski et al., 2015),
WISC-VPN (Watkins et al., 2018), WISC-V'® (Canivez

et al., 2018), WISC-V*™" (Fenollar-Cortés & Watkins,
2019), and French WISC-V (Lecerf & Canivez, 2018) fur-
ther reinforces the need for extreme caution in WISC-V
interpretation beyond the FSIQ. The attempt to divide the
PR factor into separate and distinct VS and FR factors was
again unsuccessful and further suggests that standard scores
and comparisons for FR and VS are potentially misleading.
Better measurement of FR as distinct from g may require
creation and inclusion of more or better indicators. Given
the insubstantial amounts of unique true score variance cap-
tured by the WISC-V group factors in both EFA and CFA,
and lack of evidence for incremental validity or diagnostic
utility, it seems prudent to recommend more efficient meth-
ods of estimating general intelligence in clinical assessment
through the use of more cost and time effective tests to esti-
mate general intelligence (Kranzler & Floyd, 2013).
Clinicians interpreting WISC-V scores beyond the FSIQ
risk engaging in misinterpretation or overinterpretation of
scores because the factor index scores conflate general
intelligence and group factor variance. Consideration of
these and other independent WISC-V studies allow users to
“know what their tests can do and act accordingly” (Weiner,
1989, p. 829).
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Notes

1. The actual scoring structure of the WISC-V produces the
FSIQ score from only 7 subtests so omega hierarchical and H
estimates based on 10 subtests is theoretical.

2. Itis also important for clinicians to bear in mind that the stan-
dardized scores that have been developed for the WISC-V, do
not account for these complexities.
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