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ABSTRACT
The construct validity of the Spanish Version of the Wechsler Intelligence Scale for Children Fifth
Edition (WISC-VSpain) was investigated via confirmatory factor analysis. For all 15 subtests, the
higher-order model preferred by Wechsler (2015b) contained five group factors but lacked
discriminant validity. A bifactor model with five group factors and one general factor in a
Cattell-Horn-Carroll framework exhibited good fit when the Fluid Reasoning and Visual Spatial
group factors were allowed to correlate but was compromised by low discriminant validity with
concomitant interpretation confounding. A bifactor model with four group factors and one
general factor akin to the traditional Wechsler model also exhibited good global fit and afforded
greater parsimony through simple structure and fewer factors. In both models, the general factor
was predominant, accounting for around 35% of the total variance and 67% of the common
variance and about twice the variance accounted for by all the group factors combined. Similar
results were obtained when the 10 primary subtests were analyzed. For both 10- and 15-subtest
analyses, results demonstrated that reliable variance of WISC-VSpain factor index scores was
primarily due to the general factor. It was concluded that the cumulative weight of reliability
and validity evidence suggests that psychologists should focus their interpretive efforts at the
general factor level and exercise extreme caution when using group factor scores to make
decisions about individuals.
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The administration and interpretation of standardized
psychological tests to assess cognitive ability is a funda-
mental professional function of psychologists (Evers
et al., 2017; Kranzler, 2016; Kranzler, Benson, &
Floyd, 2016) and the Wechsler scales are the most
popular standardized instruments used by those psy-
chologists for that purpose (Oakland, Douglas, & Kane,
2016; Piotrowski, 2017; Wright et al., 2017). Therefore,
versions of the Wechsler Intelligence Scale for
Children, especially its most recent fifth edition, are
widely applied across the globe (Wechsler, 2014a,
2014b, 2015a, 2016a, 2016b, 2016c).

When adapting a test from one country or culture to
another, the International Test Commission (ITC, 2017)
has suggested that evidence supporting the norms, relia-
bility, and validity of the adapted version of the test be
provided. Further, professional standards require that
psychologists understand the psychometric principles
of reliability and validity and accept responsibility for
proper administration and accurate scoring of tests as
well as for interpretation of test scores consistent with

the evidence supporting their reliability and validity
(American Educational Research Association, American
Psychological Association, and National Council on
Measurement in Education [AERA, APA, & NCME],
2014; British Psychological Society, 2007; Evers et al.,
2013; ITC, 2001). Consequently, competent psychologi-
cal assessment of cognitive ability with a WISC is depen-
dent upon evidence regarding the reliability and validity
of its scores (Krishnamurthy et al., 2004).

WISC-V Spain

A revised and adapted version of the U.S. WISC-V
(Wechsler, 2014a) was recently published in Spain: the
Escala de inteligencia de Wechsler para niños–V
(WISC-VSpain; Wechsler, 2015a). Its scores cannot be
assumed to be identical to those of its predecessor
because the WISC-VSpain was a major revision invol-
ving the addition of new subtests and factor index
scores, deletion of subtests, and changes to the con-
tents and instructions of all subtests (Wechsler,
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2015b). Nor can the WISC-VSpain be assumed to be
identical to the U.S. version because its adaptation
involved the deletion of U.S. items as well as the
addition of new items to several subtests and the
omission of an entire U.S. subtest (i.e., Picture
Concepts). Thus, its psychometric merits must be
independently evaluated by prospective users (AERA,
APA, & NCME, 2014; Beaujean, 2015a; ITC, 2016).

Psychometric information about the WISC-VSpain

was provided in its manual (Wechsler, 2015b).
Additional information about the WISC-VSpain might
be obtained from independent test reviews but none
have been published as yet. Thus, the only direct source
of information about the reliability and validity of
WISC-VSpain scores comes from its publisher.
Dependence on the opinion of test authors and pub-
lishers “is akin to relying solely on the opinions pro-
vided by pharmaceutical companies to make decisions
on whether to take their medication. While their infor-
mation can be valuable, these individuals . . . have a
conflict of interest” (Beaujean, 2015a, p. 53).

However, versions of the WISC-V have also been
published in other countries, so analyses of those
national scales might provide information about the
validity of WISC-VSpain scores, albeit indirectly. The
publisher proposed a higher-order structure with a
second-order general intelligence (g) factor being
loaded by five first-order group factors for every
national scale (e.g., Figure 1) but independent factor
analyses of the U.S., UK, French, and Canadian norma-
tive scores have preferred a four-factor structure remi-
niscent of that found with the prior fourth edition of
the WISC where the subtests purported to load onto a
factor new to the WISC-V (fluid reasoning) combined

with subtests previously found to measure visual-per-
ceptual reasoning (Canivez, Watkins, & Dombrowski,
2016, 2017; Canivez, Watkins, & McGill, 2017;
Dombrowski, Canivez, & Watkins, 2017; Lecerf &
Canivez, 2017;Watkins, Dombrowski, & Canivez,
2017). Although an analysis of the U.S. normative
data by Reynolds and Keith (2017) partially supported
the publisher-preferred five-factor model, the fluid rea-
soning and visual-spatial reasoning factors were
allowed to correlate to recognize “the nonverbal related
nature of these two factors” (p. 38). However, there was
no explanation provided to justify why the processing
speed factor (also comprised of nonverbal content) was
not allowed to correlate with the fluid and visual-spatial
reasoning factors nor how interfactor correlations
might compromise discriminant validity (Stromeyer,
Miller, Sriramachandramurthy, & DeMartino, 2015).
Factorial invariance of the publisher preferred five-fac-
tor structure has been reported (H. Chen, Zhang,
Raiford, Zhu, & Weiss, 2015; Scheiber, 2016), but
rival four-factor models were not investigated in those
studies. Thus, independent researchers tend to disagree
with the publisher regarding the constructs being mea-
sured by the WISC-V.

The ITC (2016) noted that determination of the
factor structure of an adapted test is especially impor-
tant. For the WISC-VSpain, Wechsler (2015b) proposed
a higher-order structure with a second-order general
intelligence (g) factor being loaded by five first-order
group factors which, in turn, were loaded by 15 pri-
mary and secondary subtests. This structure was estab-
lished via confirmatory factor analysis (CFA) by
Wechsler (2015b) and is illustrated in Figure 1.
However, “CFA studies based upon weak theoretical

Figure 1. Standardized structure of the WISC-VSpain proposed by Wechsler (2015b).
Note. SI = Similarities, VO = Vocabulary, IN = Information, CO = Comprehension, MR = Matrix Reasoning, FW = Figure Weights,
AR = Arithmetic, DS = Digit Span, PS = Picture Span, LN = Letter-Number Sequencing, BD = Block Design, VP = Visual Puzzles,
CD = Coding, SS = Symbol Search, CA = Cancellation, VC = Verbal Comprehension factor, FR = Fluid Reasoning factor, WM = Working
Memory factor, VS = Visual Spatial factor, PS = Processing Speed factor, and g = General Intelligence. Solid lines are paths to primary
subtests used to compute factor index scores and dotted lines are paths to secondary subtests. Asterisk (*) indicates subtests that contribute
to the Full Scale IQ score.

INTERNATIONAL JOURNAL OF SCHOOL & EDUCATIONAL PSYCHOLOGY 151



perspectives, lack of testing alternative theoretical
views, or insufficient evidence may not offer adequate
support of construct validity” (DiStefano & Hess, 2005,
p. 225). Additionally, CFA can demonstrate that a
model is consistent with the data but “it does not con-
firm the veracity of the researcher’s model” (Kline,
2016, p. 21).

Based on best-practice guidelines (Bowen & Guo,
2012; Brown, 2015; DiStefano & Hess, 2005; Kline,
2016; MacCallum & Austin, 2000; McDonald & Ho,
2002; Widaman, 2012), we have seven major concerns
about the CFA methods reported by Wechsler (2015b).
First, only higher-order models were tested. In the
higher-order model, general intelligence (g) is seen as
a superordinate factor having a direct effect on several
group factors but an indirect effect on the measured
variables (see top panel of Figure 2). In contrast, bifac-
tor models (see bottom panel of Figure 2) conceptualize
g as a breadth factor having direct effects on the mea-
sured variables (Reise, 2012). Carroll’s (1993) cognitive
model was incorporated into the Cattell-Horn-Carroll
theory (CHC; Schneider & McGrew, 2012) that influ-
enced development of the WISC-VSpain (Wechsler,
2015b) and is most accurately represented by a bifactor

model (Beaujean, 2015b). Thus, alternative conceptua-
lizations of the factorial structure of the WISC-VSpain

must be tested to provide convincing support for a
model (Brown, 2015).

Second, the method used to scale the latent variables
in CFA models was not reported by Wechsler (2015b).
All standard methods should produce identical degrees
of freedom and model fit indices (Brown, 2015).
Beaujean (2016) reproduced the analyses reported for
the U.S. WISC-V (Wechsler, 2014a) and conjectured
that an improperly modified effects-coding method was
applied that understated the degrees of freedom. It
appears that this modified effects-coding method was
also applied to CFA analyses of the WISC-VSpain stan-
dardization sample. This could impact fit indices and
interpretation. Thus, it is unclear whether the models
reported by Wechsler (2015b) were actually tested
(Cortina, Green, Keeler, & Vandenberg, 2017). The
consequences of using a nonstandard scaling method
in the WISC-VSpain analyses are unknown but should
be explored through replication using standard scaling
methods.

Third, Wechsler (2015b) used weighted least squares
(WLS) to estimate CFA parameters whereas maximum

Figure 2. Conceptual illustration of higher-order (top panel) versus bifactor (bottom panel) models.
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likelihood (ML) estimations are typically applied with
multivariate continuous data like WISC-VSpain scores.
Estimation method can affect model fit and parameter
estimates, and are sensitive to sample size and multi-
variate normality (Lei & Wu, 2012). Hoyle (2000, p.
478) cautioned that “the use of an estimator other than
maximum likelihood requires explicit justification,”
and Brown (2015, p. 346) concluded that “WLS is not
recommended.” The effect of WLS on WISC-VSpain

estimates is unknown but should be investigated.
Fourth, the five-factor model preferred by Wechsler

(2015b) abandoned the parsimony of simple structure
(Thurstone, 1947) by allowing multiple cross-loadings of
the Arithmetic subtest (see Figure 1). Simple structure
honors “the purpose of science [which] is to uncover the
relatively simple deep structure principles or causes that
underlie the apparent complexity observed at the surface
structure level” (Le, Schmidt, Harter, & Lauver, 2010, p.
112). Following this concept, cross-loadings that are not
both statistically and practically significant (i.e., > .30)
might best be constrained to zero (Stromeyer et al.,
2015). In fact, simple structure is implied by the scoring
structure of the WISC-VSpain where composite scores are
created from unit-weighted sums of subtest scores. Thus,
the preferred five-factor model is discrepant from the
actual scoring structure of the WISC-VSpain.

Fifth, Wechsler (2015b) relied on chi-square differ-
ence tests of nested models that are sensitive to trivial
differences with large samples. Millsap (2007, p. 878)
admonished that “ignoring the global chi-square tests
while at the same time conducting and interpreting
chi-square difference tests between nested models should
be prohibited as nonsensical.” Wechsler (2015b)
reported nine chi-square difference tests at the .05
alpha level, which with a simple Bonferroni correction
would suggest that each test should be set at .006 to
maintain a study-wide error rate at the .05 level.
Philosophers of science have repeatedly warned about
the dangers of null hypothesis significance testing (Haig,
2017) and the validity of chi-square difference tests has
been contested (Yuan & Chan, 2016). Consequently, the
differences in global fit relied on by Wechsler (2015b) to
select preferred models might reflect only trivial differ-
ences between models. For example, Wechsler’s (2015b)
models 5c and 5d exhibited identical fit indices but their
Δχ2 was statistically significant.

A sixth concern is that global model fit, by itself,
does not guarantee model veracity (Bowen & Guo,
2012; Brown, 2015; DiStefano & Hess, 2005; Kline,
2016; MacCallum & Austin, 2000; Stromeyer et al.,
2015; Widaman, 2012). Even with good global fit, rela-
tionships among variables might be weak, parameter
estimates might not be statistically or practically

significant, the latent variables might not account for
meaningful variance in the indicators, or parameter
values might be out of range. Wechsler (2015b) did
not report the statistical significance of parameter esti-
mates but a review of Figure 1, the publisher preferred
structural model for the WISC-VSpain, reveals several
areas of local stress. For example, standardized loadings
of .21 and .28 for the Arithmetic subtest and a standar-
dized path coefficient of .97 between the higher-order
general intelligence factor and the first-order Fluid
Reasoning (FR) factor. This almost-perfect relationship
constitutes a threat to discriminant validity (Brown,
2015; Kline, 2016) and indicates that the g and FR
factors were empirically redundant (Le et al., 2010).

Finally, Wechsler (2015b) did not report the propor-
tions of variance accounted for by general and group
factors, nor the communality of measured variables.
These metrics speak to the relationships of measured
and latent variables and are important for accurate
interpretation of common factors (Brown, 2015;
Gignac & Kretzschmar, 2017; MacCallum & Austin,
2000). Further, they allow the computation of model-
based reliability estimates that replace the classical test
theory hypothesis of true and error variance with the
factor analytic conceptualization of common and
unique variance while simultaneously making fewer
and more realistic assumptions than coefficient alpha
(Gignac, 2015; McDonald, 1999; Reise, 2012;
Rodriguez, Reise, & Haviland, 2016; Watkins, 2017;
Zinbarg, Revelle, Yovel, & Li, 2005). Consequently,
these estimates provide “a better estimate for the com-
posite score and thus should be used” (Chen, Hayes,
Carver, Laurenceau, & Zhang, 2012, p. 228).

In summary, the evidence provided by Wechsler
(2015b) to support the factorial validity of the WISC-
VSpain is open to question. However, competent psycho-
logical assessment demands strong supportive evidence
of reliability and validity before any test, including the
WISC-VSpain, can be used to make high-stakes decisions
(AERA, APA, & National Council on Measurement in
Education [NCME], 2014; British Psychological Society,
2007; Evers et al., 2013; ITC, 2013; Krishnamurthy et al.,
2004). Accordingly, the factor structure of the WISC-
VSpain was independently analyzed to identify an appro-
priate scoring structure for all 15 subtests as well as for
the 10 subtests likely to be used in clinical practice.

Method

Participants

Participants were the WISC-VSpain standardization
sample of 1,008 children aged 6 years to 16 years of
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age, stratified by age, sex, parent education level, geo-
graphic region (North, South, East, and West), and
geographic type (i.e., rural, suburban, and urban). The
sample appeared to be representative of Spanish chil-
dren (see Wechsler, 2015b for full details).

Instrument

The WISC-VSpain is a norm-referenced, individually
administered intelligence battery appropriate for chil-
dren aged 6 through 16 years. According to the WISC-
VSpain manual, CHC theory as well as neurodevelop-
mental research and clinical utility were considered in
its development and these frameworks can be utilized
in the interpretation of WISC-VSpain scores.

As illustrated in Figure 1, the WISC-VSpain contains
10 primary and 5 secondary subtests (M = 10, SD = 3).
The 5 CHC factor index scores (M = 100, SD = 15) are
computed from the 10 primary subtests: Similarities (SI)
and Vocabulary (VO) create the Verbal Comprehension
Index (VCI); Block Design (BD) and Visual Puzzles
(VP) subtests create the Visual Spatial Index (VS);
Matrix Reasoning (MR) and Figure Weights (FW) subt-
ests create the Fluid Reasoning Index (FR); Digit Span
(DS) and Picture Span (PS) subtests create the Working
Memory Index (WMI); and Coding (CD) and Symbol
Search (SS) subtests create the Processing Speed Index
(PSI). The Full Scale IQ (FSIQ; M = 100, SD = 15) is
computed using only 7 primary subtests: SI, VO, BD,
MR, FW, DS, and CD. The 5 secondary subtests are
proposed to load onto the same factors as the primary
subtests: Information (IN) and Comprehension (CO) on
the VC factor; Arithmetic (AR) on the FR factor; Letter-
Number Sequencing (LN) on the WM factor; and
Cancellation (CA) on the PS factor.

Wechsler (2015b) reported that the average split-half
reliability of the FSIQ for the total standardization sam-
ple was .95, whereas the average reliability of factor
index scores ranged from .88 (PSI) to .93 (FRI) and the
average reliability of subtest scores ranged from .74 (CO)
to FW (.93). Short-term test–retest reliability was .89 for
the FSIQ, ranged from .74 (FRI) to .87 (VSI) for the
factor index scores, and ranged from .67 (FW) to .84
(CA) for subtests. Concurrent validity was supported by
a comparison of WISC-VSpain scores to other cognitive
and achievement tests. Convergent and discriminant
validity was supported by studies of WISC-VSpain scores
among clinical groups. Factorial validity evidence was
presented via a series of CFA with the final structural
model adhering to a CHC framework (see Figure 1).

Analyses

Correlations, means, and standard deviations of the 15
WISC-VSpain primary and secondary subtests for the
total standardization sample were extracted from
Wechsler (2015b). All CFA were conducted with Mplus
8.0 (Muthén & Muthén, 2017) from covariance matrices
using the maximum likelihood estimator. Latent variable
scales were identified by setting a reference indicator in
higher-order models and by setting the variance of latent
variables in bifactor models (Brown, 2015). Parameter
estimates were constrained to equality in models with
only two indicators per factor (Gignac, 2007).

Analyses
The evaluated models were taken from Wechsler
(2015b) and are detailed in Table 1. Wechsler (2015b)
only included higher-order models with general intelli-
gence at the second level (see Figure 1 and the top panel
of Figure 2 for examples). Analyses with the 10 primary

Table 1. Alternative structural models for the WISC-VSpain with 15 primary and secondary subtests.
1 2 3 4a 4b 4c 4d 5a 5b 5c 5d 5e

SI* F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1
VO* F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1
IN F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1
CO F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1
BD* F1 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2
VP F1 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2
MR* F1 F2 F2 F2 F3 F2 F2 F3 F3 F3 F3 F3
FW* F1 F2 F2 F2 F3 F2 F2 F3 F3 F3 F3 F3
AR F1 F1 F1 F3 F3 F2-F3 F1-F3 F4 F3 F3-F4 F1-F4 F1-F3-F4
DS* F1 F1 F1 F3 F3 F3 F3 F4 F4 F4 F4 F4
PS F1 F2 F2 F3 F3 F3 F3 F4 F4 F4 F4 F4
LN F1 F1 F1 F3 F3 F3 F3 F4 F4 F4 F4 F4
CD* F1 F2 F3 F4 F4 F4 F4 F5 F5 F5 F5 F5
SS F1 F2 F3 F4 F4 F4 F4 F5 F5 F5 F5 F5
CA F1 F2 F3 F4 F4 F4 F4 F5 F5 F5 F5 F5

Note. F1–F5 indicate the factor on which each subtest loads. SI = Similarities, VO = Vocabulary, IN = Information, CO = Comprehension, BD = Block Design,
VP = Visual Puzzles, MR = Matrix Reasoning, FW = Figure Weights, AR = Arithmetic, DS = Digit Span, PS = Picture Span, LN = Letter-Number Sequencing,
CD = Coding, SS = Symbol Search, and CA = Cancellation. Models 2-5c are higher-order, as reported by Wechsler (2015b). The 10 primary subtests are in
bold and subtests that contribute to the Full Scale IQ score are marked with an *.
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subtests used to create factor index scores were con-
ducted in addition to analyses with all 15 primary and
secondary subtests. Bifactor versions of simple structure
models were also included to allow a comparison of
alternative models not tested by Wechsler (2015b).

Global model fit was evaluated with the chi-square
likelihood ratio, comparative fit index (CFA), Tucker-
Lewis index (TLI), root mean square error of approx-
imation (RMSEA), and Akaike’s information criterion
(AIC). Given the large sample size, it was expected that
the chi-square likelihood test of exact fit would be
rejected (Brown, 2015). Accordingly, global approxi-
mate fit measures that consider absolute (RMSEA)
and relative (CFI, TLI) fit as well as parsimony
(RMSEA, AIC) were relied on to assess alternative
models (Gignac, 2007; Loehlin & Beaujean, 2017).
Based on prior research and expert suggestions (Hu &
Bentler, 1999), good model fit required TLI/CFI ≥ .95
as well as RMSEA ≤ .06. The AIC was used to compare
the global fit of alternative models with the lowest AIC
value indicating the model most likely to generalize
(Akaike, 1987). Meaningful differences between well-
fitting models was also evaluated using ΔCFI/TLI > .01,
ΔRMSEA > .015 (Chen, 2007; Cheung & Rensvold,
2002; Gignac, 2007), and ΔAIC ≥ 10 (Anderson,
2008). Given that global fit indices are averages that
can mask areas of local misfit (McDonald & Ho, 2002)
and potentially invalidate a model, parameter estimates
were also examined to ensure that they made statistical
and substantive sense (Brown, 2015).

Model-based reliability
The most popular model-based reliability estimates are
omega coefficients (Gignac, 2015; McDonald, 1999; Reise,
2012; Rodriguez et al., 2016; Watkins, 2017; Zinbarg et al.,
2005). The most general omega coefficient is omega total
(ω), which is an “estimate of the proportion of variance in
the observed total score attributable to all ‘modeled’
sources of common variance” (Rodriguez et al., 2016, p.
140). High ω values indicate a highly reliablemultidimen-
sional total score. Another omega coefficient, called
omega subscale (ωs), can be computed for each unit-
weighted subscale score. ωs indexes the proportion of
variance in each unit-weighted subscale score attributable
to a blend of general and group factor variance. High ωs

values indicate a highly reliable multidimensional group
factor score. Like coefficient alpha, ω and ωs both reflect
the systematic variance attributable to multiple common
factors and neither can distinguish between the precision
of the general factor versus the precision of the group
factor. There is no universally accepted guideline for
coefficient alpha values sufficient for high-stakes deci-
sions about individuals, but values ≥ .90 are commonly

recommended and “scores with values below .90 should
not be interpreted” (Kranzler & Floyd, 2013, p. 71). Given
their conceptual similarity, omega coefficients should
meet the same standard as alpha coefficients.

Another omega variant allows a distinction between
general and group factor variance because it indexes
variance attributable to a single factor independent of
all other factors and is, therefore, a measure of the
precision with which a score assesses a single construct.
When applied to the general factor, omega hierarchical
(ωh) is the ratio of the variance of the general factor
compared to the total test variance and represents the
strength of the general factor. When applied to group
factors, omega hierarchical subscale (ωhs) indexes the
proportion of variance in the group factor score that is
solely accounted for by its intended construct. If ωhs is
low relative to ωs, most of the reliable variance of that
group factor score is due to the general factor, which
precludes meaningful interpretation of that group fac-
tor score as an unambiguous indicator of the target
construct (Rodriguez et al., 2016). In contrast, a robust
ωhs coefficient suggests that most of the reliable var-
iance of that group factor score is independent of the
general factor and clinical interpretation of an exam-
inee’s strengths and weaknesses beyond the general
factor can be conducted (Reise, 2012). There is also
no empirically based guideline for acceptable levels of
omega hierarchical coefficients for clinical decisions
about individuals, but it has been suggested that they
should, at a minimum, exceed .50 although .75 would
be preferred (Reise, 2012). Given this standard, “the
meaningful interpretation of index scores is arguably
impossible” when omega hierarchical coefficients drop
below .50 (Gignac & Watkins, 2013, p. 658).

The H coefficient of Hancock and Mueller (2001)
provides another perspective on construct reliability.
Whereas omega hierarchical represents the correlation
between a factor and a unit-weighted composite score,
H is the correlation between a factor and an optimally
weighted composite score and represents how well a
latent variable is represented by its indicators. When H
is low, the latent variable is not very well defined by its
indicators and will tend to be unstable across studies
(Rodriguez et al., 2016). Hancock and Mueller (2001)
suggested criterion values of H ≥ .70 for sufficient
certainty regarding the relations among constructs.

Results

15 Primary and secondary subtests

Global fit measures for all tested models are reported in
Table 2. Models with fewer than four group factors

INTERNATIONAL JOURNAL OF SCHOOL & EDUCATIONAL PSYCHOLOGY 155



failed to achieve good global fit, whereas models with
four and five group factors generally attained good
global fit. All models with good fit were also inspected
for size of parameters, statistical significance of para-
meters, and interpretability. All higher-order models
with a CHC structure were marked by FR loadings on
the general intelligence factor at such high levels (.96 to
1.03) as to indicate that those factors were empirically
redundant (Bowen & Guo, 2012; Le et al., 2010).
Although these models exhibited good global fit, they
were invalidated by parameters that were statistically or
substantively improper.

The initial bifactor version of model 5b was impro-
per, exhibiting a negative variance estimate for the FR
factor. However, that model converged appropriately
when the FR and VS factors were allowed to correlate
(as per Reynolds & Keith, 2017) and exhibited the best
global fit (see right panel of Figure 3). The bifactor
version of the traditional Wechsler structure (model
4a) was the second-best-fitting model (see left panel
of Figure 3). The FR and VS factors merged in this
model, although the residualized loadings of the MR
and FW subtests were smaller than those of the BD and
VP subtests. These two models were not statistically
nor meaningfully different. Additionally, all parameters
were statistically significant, none were out of range,
and all were substantively meaningful in both models.

Given these results, it appears that a four-factor
Wechsler model and a modified five-factor CHC

model exhibited equivalent fit to the data. However,
the CHC model was marked by low discriminant valid-
ity with concomitant interpretational confounding
(Stromeyer et al., 2015).

The bifactor version of the traditional Wechsler model
(e.g., 4a) was selected for variance decomposition and
computation of model-based reliability coefficients
because it afforded greater parsimony through simple
structure and fewer factors. Sources of variance from
that model are presented in Table 3. The general factor
accounted for 35.3% of the total variance and 66.5% of the
common variance. Only the PS group factor accounted
for more than 5% of the total variance. In fact, the general
factor accounted for about twice the total and common
variance of all group factors combined. All together, the
general and group factors accounted for 53% of the total
variance leaving 47% due to specific variance and error.

Only the AR subtest was a good measure of g
whereas three subtests (CD, SS, and CA) were poor
measures of g (Kaufman, 1994). Communality of the
CA subtest was very low, only 26% of its variance was
explained by the general and PS factors. Thus, 74% of
its variance was specific and error variance. The
explained common variance (ECV; Rodriguez et al.,
2016) for a subtest is the ratio of variance explained
by a general factor divided by the variance explained by
both general and group factors (see Table 3). Using that
metric, more than 90% of the variance of the MR, FW,
and AR subtests was explained by the general factor.

Table 2. Confirmatory factor analysis fit statistics for the WISC-VSpain total standardization sample (N = 1,008).
Model χ2 df CFI ΔCFI TLI ΔTLI RMSEA 90% CI RMSEA AIC ΔAIC

15 Subtests
1 1155.7 90 .825 .159 .796 .182 .108 .103–.114 70896.9 953.2
2 995.6 89 .851 .133 .824 .154 .101 .095–.106 70738.8 795.1
3 647.6 87 .908 .076 .889 .089 .080 .074–.086 70394.7 451.0
4a 315.5 86 .962 .022 .954 .024 .051 .045–.058 70064.6 120.9
4a bifactor 174.8 75 .984 0 .977 .001 .036 .029–.043 69945.9 2.2
4b 386.3 86 .951 .033 .940 .038 .059 .053–.065 70135.5 191.8
4b bifactor 204.9 76 .979 .005 .971 .007 .041 .034–.048 69974.1 30.4
4c 261.2 85 .971 .013 .964 .014 .045 .039–.052 70012.3 68.6
4d 240.3 84 .974 .010 .968 .010 .043 .037–.049 69993.5 49.8
5a 297.4 85 .965 .019 .957 .021 .050 .044–.056 70048.5 104.8
5a bifactorb 201.9 77 .979 .005 .972 .006 .040 .033–.047 69969.0 25.3
5ba 242.1 85 .974 .010 .968 .010 .043 .037–.049 69993.2 49.5
5b bifactorb 211.3 76 .978 .006 .969 .009 .042 .035–.049 69980.5 36.8
5b bifactor FR-VSbc 174.5 76 .984 0 .978 0 .036 .029-.043 69943.7 0
5c 227.9 84 .976 .008 .970 .008 .041 .035–.048 69981.1 37.4
5d 234.5 84 .975 .009 .969 .009 .042 .036–.049 69987.6 43.9
5e 218.2 83 .978 .006 .972 .006 .040 .034–.047 69973.3 29.6
5e bifactor 196.1 74 .980 .004 .972 .006 .040 .034-.047 69969.2 25.5

10 Subtests
4a 122.9 31 .972 .015 .960 .019 .054 .044-.064 47507.2 46.3
4a bifactorb 70.7 28 .987 0 .979 0 .039 .028-.050 47460.9 0
5ad 89.5 30 .982 .005 .973 .006 .044 .034-.055 47475.7 14.8
5a bifactorbd 89.5 30 .982 .005 .973 .006 .044 .034-.055 47475.7 14.8

Note. CFI = Comparative Fit Index, TLI = Tucker–Lewis Index, RMSEA = root mean square error of approximation, AIC = Akaike’s Information Criterion. Models
correspond to those listed in Table 1 (plus bifactor variants of simple structure models that were added for this study). Each index of best-fitting model in
bold. Indices not meaningfully different (ΔCFI and ΔTLI < .01, ΔRMSEA > .015, ΔAIC ≤ 10) from best fit shaded.

aImproper solution. Negative error variance estimate for FR factor.
bModels with only two indicators for group factors were constrained to equality for identification.
cIdentical to bifactor model 5b except the Fluid Reasoning and Visual Spatial group factors were allowed to correlate as suggested by Reynolds and Keith (2017).
dNot statistically distinguishable due to the constraints needed to identify five factors with only 10 indicators
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Model-based reliability coefficients are presented in
Table 5. Only the FSIQ met the guideline of ≥ .90 for
decisions about individuals, although the VC, WM,
and VS factor scores were moderately reliable with
ωs coefficients of .81 to .83. When the systematic
variance attributable to a single target factor of inter-
est was indexed via omega hierarchical coefficients,
only the general factor exhibited good reliability
(ωh = .83), whereas the group factor coefficients were

low (ωhs = .16 to .48), suggesting that “the apparent
reliability of subscales judged by coefficient omega
mostly is attributable to individual differences on the
general factor” (Rodriguez et al., 2016, p. 142). For
example, 83% of the variance of the unit-weighted
VCI score was attributable to both general and VC
factors, whereas only 24% of the variance of that same
unit-weighted VCI score was uniquely attributable to
the VC factor.

Table 3. Sources of variance for WISC-VSpain standardization sample (N = 1,008) 15 primary and secondary subtests according to a
Bifactor Wechsler model.

General Verbal Comprehension Visual Spatial Working Memory Processing Speed

Subtest b b2 b b2 b b2 b b2 b b2 h2 u2 ECV

Similarities .66 .436 .42 .176 .606 .394 .71
Vocabulary .63 .397 .50 .250 .638 .362 .61
Information .66 .436 .36 .130 .565 .435 .77
Comprehension .56 .314 .30 .090 .404 .596 .78
Block Design .58 .336 .37 .137 .472 .528 .71
Visual Puzzles .62 .384 .60 .360 .741 .259 .52
Matrix Reasoning .66 .436 .14 .020 .454 .546 .96
Figure Weights .62 .384 .20 .040 .420 .580 .91
Arithmetic .75 .563 .10 .010 .568 .432 .98
Digit Span .68 .462 .43 .185 .647 .353 .71
Picture Span .52 .270 .24 .058 .323 .677 .82
Letter–Number Sequencing .67 .449 .53 .281 .724 .276 .62
Coding .39 .152 .66 .436 .587 .413 .26
Symbol Search .44 .194 .58 .336 .524 .476 .37
Cancellation .30 .090 .41 .168 .261 .739 .35
Total Variance 35.3 4.3 3.7 3.6 6.3 53.2 46.8
ECV 66.5 8.1 7.0 6.7 11.8
H .900 .443 .439 .408 .597

Note. b = standardized loading of subtest on factor; b2 = variance explained in the subtest; h2 = communality; u2 = uniqueness; and ECV = explained
common variance, H is the correlation between a factor and an optimally weighted composite score (Hancock & Mueller, 2001). g loadings ≥ .70 are
considered good (bold), from .50 to .69 are fair (italic), and < .50 are poor (Kaufman, 1994).

Figure 3. Best-fitting models among the 15 WISC-VSpain primary and secondary subtests. Left panel is bifactor model 4a. Right panel
is bifactor model 5b with correlated FR and VS factors.
Note. IN = Information, VO = Vocabulary, SI = Similarities, CO = Comprehension, AR = Arithmetic, DS = Digit Span, PS = Picture Span,
LN = Letter-Number Sequencing, BD = Block Design, VP = Visual Puzzles, MR = Matrix Reasoning, FW = Figure Weights, CD = Coding,
SS = Symbol Search, CA = Cancellation, VC = Verbal Comprehension factor, WM = Working Memory factor, VS = Visual Spatial factor,
FR = Fluid Reasoning factor, PS = Processing Speed factor, and g = General Intelligence.
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This situation would not be improved by utilizing
optimally weighted composite scores as indicated by
the H values in Table 3. The optimal composite of
indicators explained 90% of the variability in the gen-
eral intelligence construct but considerably less than
70% of the variability in the group factors. Thus, the
group factors (VC, VS, WM, and PS) were not very well
defined by their subtest indicators.

10 Primary subtests

Although there are 15 WISC-VSpain subtests, only 10 are
needed to produce its five factor scores. As a result, this
10-subtest scoring structure was also subjected to CFA.
A four-factor model (4a) was created by combining the
FR and VS subtests into a single factor. That bifactor
model was statistically and practically superior in fit to
its equivalent higher-order alternative (see Table 2).

Higher-order and bifactor models with five group
factors were not statistically distinguishable due to the
constraints needed to identify five factors with only 10
indicators (see Table 2). Nevertheless, bifactor model 4a
was more likely to generalize than higher-order and
bifactor five-factor models according to ΔAIC values.
Thus, variance decomposition and model-based relia-
bility coefficients for that four-factor bifactor model are
presented in Tables 4 and 5, respectively. In this model,
the general factor accounted for 34.8% of the total
variance and 62.5% of the common variance, more
than contributed by all group factors combined. The
general and group factors accounted for 55.7% of the
total variance leaving 44.3% due to specific variance
and error. None of the subtests were good measures
of g whereas two subtests (CD and SS) were poor
measures of g (Kaufman, 1994). More than 95% of the

variance of the MR and FW subtests was explained by
the general factor.

Notably, the MR subtest had a statistically nonsigni-
ficant loading of .06 and the FW subtest had a practi-
cally nonsignificant loading of .14 on the Visual Spatial
factor in that bifactor model, suggesting that general
intelligence alone was responsible for variation in MR
and FW subtest scores. That suggestion was reinforced
by the results from the bifactor 5a model where neither
the loading of MR nor FW was statistically significant.

Only the FSIQ was sufficiently reliable for decisions
about individuals (ω = .90 and ωh = .79). After con-
trolling for the influence of the general factor, the five
group factor scores were unreliable (ωhs = .15 for WM
to .50 for PS), each score providing “little information
beyond that provided by the general factor estimate”
(DeMars, 2013, p. 374). However, these reliability esti-
mates are hypothetical for the FSIQ because the actual
scoring structure of the WISC-VSpain uses only 7

Table 4. Sources of variance for WISC-VSpain standardization sample (N = 1,008) 10 primary subtests according to a bifactor Wechsler
model.

Generale VC VS WM PS

Subtest b b2 b b2 b b2 b b2 b b2 h2 u2 ECV

SI .6400 .413 .47 .218 .632 .368 .655
VO .61 .371 .47 .218 .589 .411 .630
MR .70 .490 .06 .004 .494 .506 .993
FW .63 .396 .14 .021 .416 .584 .950
BD .60 .364 .27 .074 .438 .562 .831
VP .62 .387 .75 .567 .954 .046 .406
DS .67 .454 .33 .106 .561 .439 .810
PS .53 .276 .33 .106 .382 .618 .722
CD .39 .149 .62 .386 .535 .465 .279
SS .43 .181 .62 .386 .566 .434 .319
ETV 34.8 4.4 6.7 2.1 7.7 55.7 44.3
ECV 62.5 7.8 12.0 3.8 13.9
H .851 .358 .586 .192 .557

Note. VC = Verbal Comprehension factor, FR = Fluid Reasoning factor, VS = Visual Spatial factor, WM = Working Memory factor, PS = Processing Speed factor,
b = standardized loading of subtest on factor; b2 = variance explained in the subtest, h2 = communality, u2 = uniqueness, SI = Similarities, VO = Vocabulary,
IN = Information, CO = Comprehension, MR = Matrix Reasoning, FW = Figure Weights, AR = Arithmetic, DS = Digit Span, PS = Picture Span, LN = Letter-
Number Sequencing, BD = Block Design, VP = Visual Puzzles, CD = Coding, SS = Symbol Search, CA = Cancellation, ETV = explained total variance, H is the
correlation between a factor and an optimally weighted composite score (Hancock & Mueller, 2001), and ECV = explained common variance. g loadings ≥
.70 are considered good (bold), from .50 to .69 are fair (italic), and < .50 are poor (Kaufman, 1994)

Table 5. Omega reliability coefficients for WISC-VSpain standar-
dization sample (N = 1,008) from alternative models.

Bifactor
Wechsler 15
Subtests

10 Primary
Subtests

7 FSIQ
Subtests

Factor Score ω/ωs ωh/ωhs ω/ωs ωh/ωhs ω/ωs ωh/ωhs

General .92 .83 .90 .79 .86 .79
Verbal Comprehension .83 .24 .76 .27 .76 .26
Working Memory .83 .16 .64 .15 .56 .10
Visual Spatial .81 .18 .83 .16 .56 .18
Fluid Reasoning – – – – .66 .08
Processing Speed .71 .48 .71 .50 .32 .18

Note. ω and ωs = omega of general and group factors, respectively; ωh and
ωhs = omega hierarchical of general and group factors, respectively.
Omega coefficients should exceed ~.90 for decisions about individuals
(Kranzler & Floyd, 2013). At a minimum, omega hierarchical coefficients
should exceed .50 although .75 would be preferred (Reise, 2012).
Coefficients meeting minimum standards are in bold
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subtests to compute the FSIQ, not the 10 subtests
needed to obtain factor index scores. When the 3 extra-
neous subtests were omitted from the primary subtest
model, estimates of ω and ωh for the FSIQ were .86 and
.79, respectively. Thus, the shortened FSIQ was reduced
in reliability but probably sufficiently precise for some
individual decisions.

As with the 15-subtest model, this situation would
not be improved by utilizing optimally weighted com-
posite scores as indicated by the H values in Table 4.
The optimal composite of indicators can explain 85% of
the variability in the general intelligence construct, but
less than 70% of the variability in the group factors.
Thus, the group factors (VC, VS, WM, and PS) were
not very well defined by their subtest indicators.

Discussion

Standardization sample data from the WISC-VSpain were
analyzed to investigate the construct validity of its scores.
Although Wechsler (2015b) preferred a complex higher-
order CHC model, the new FR factor in that model was
problematic because it was empirically redundant with g
and exhibited low reliability. At best, it lacked discrimi-
nant validity (Le et al., 2010). An alternative bifactor
model with four group factors and one general factor
akin to the traditional Wechsler structure was judged to
be a good representation of the structure of the WISC-
VSpain. Alternatively, a bifactor CHC model with corre-
lated FR and VS factors exhibited good fit but low
discriminant validity with concomitant interpretational
confounding (Stromeyer et al., 2015).

These results are not surprising given that previous
Wechsler scales as well as other national versions of the
WISC-V have exhibited similar bifactor structures
(Canivez et al., 2016, 2016, 2017; Cucina & Byle, 2017;
Dombrowski et al., 2017; Gignac & Watkins, 2013;
Gomez, Vance, & Watson, 2017; Gustafsson &
Undheim, 1996; Lecerf & Canivez, 2017; Styck &
Watkins, 2016; Watkins, 2006; Watkins, Canivez,
James, James, & Good, 2013; Watkins et al., 2017).
For example, Canivez et al. (2017) applied CFA to
scores from the U.S. WISC-V normative sample and
found that a bifactor model with four group factors
(where the FR and VS dimensions collapsed into a
single factor) was most likely to generalize. As with
the WISC-VSpain, subtests did not saliently load on the
FR group factor after the influence of general intelli-
gence was taken into account, general intelligence
accounted for more common and total variance than
the group factors combined, and none of the group
factor scores was sufficiently reliable for confident
interpretation.

The merits of bifactor versus higher-order models
have received considerable attention. Murray and
Johnson (2013) found that fit indices are biased in
favor of the bifactor model when there are unmodeled
complexities (e.g., minor loadings of indicators on mul-
tiple factors). Morgan, Hodge, Wells, and Watkins
(2015) analyzed simulations of bifactor and higher-
order models and confirmed that both models exhib-
ited good model fit regardless of true structure. More
recently, Mansolf and Reise (2017) confirmed that
bifactor and higher-order models could not be distin-
guished by fit indices and admitted that there is, at
present, no technical solution to this dilemma.

Murray and Johnson (2013) suggested that both
bifactor or higher-order models would provide a good
estimate of general intelligence but “if ‘pure’ measures
of specific abilities are required then bi-factor model
factor scores should be preferred to those from a
higher-order model” (p. 420). This logic has been
endorsed by other measurement specialists (Brunner,
Nagy, & Wilhelm, 2012; DeMars, 2013; Morin, Arens,
Tran, & Caci, 2016; Reise, 2012; Reise, Bonifay, &
Haviland, 2013; Rodriguez et al., 2016). Given that
scores from the WISC-VSpain will likely be used by
psychologists to provide an estimate of general ability
and to identify interventions based on cognitive
strengths and weaknesses as operationalized through
the factor index scores (Wechsler, 2015b), bifactor
model factor scores would be preferred (Murray &
Johnson, 2013).

As predicted by Murray and Johnson (2013), all
models considered in this study produced reasonable
estimates of general ability. However, omega coeffi-
cients demonstrated that reliable variance of all
WISC-VSpain factor index scores was primarily due to
the general factor, not the group factor (see Table 5).
Contrary to Wechsler (2014b), the WISC-V index
scores are not “reliable and valid measures of the pri-
mary cognitive constructs they intend to represent” (p.
149). Rather, around 45% of the total variance of
WISC-VSpain scores was due to error and specific var-
iance and none of the group factor scores was suffi-
ciently reliable for confident interpretation.

Although the publisher proposed a five-factor struc-
ture for the WISC-VSpain, this study found that a tradi-
tional Wechsler four-factor structure was more
appropriate when best-practice CFA methods were
applied. The publisher also proposed interpretation of
WISC-VSpain scores at total (FSIQ), primary (VCI, VSI,
FRI, WMI, PSI), and subtest levels. However, the inter-
pretation chapter in Wechsler (2015b) emphasized the
importance of factor index scores and only devoted one
paragraph to the FSIQ. As with prior Wechsler
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manuals, “contradictory findings available in the litera-
ture” (Braden & Niebling, 2012, p. 744) were not
reported and there was no recognition that interpreta-
tion of group factor scores confounds variance contrib-
uted by group and general factors (Braden, 2013).

Psychologists should remember that “supporters of
new methods often base their advocacy on justifications
that have not been thoroughly vetted” (Stromeyer et al.,
2015, p. 492) and that test users are ultimately respon-
sible for “appropriate test use and interpretation”
(AERA, APA, & NCME, 2014, p. 141) by ensuring
that “there is sufficient validity and reliability informa-
tion to interpret the test’s scores in the way suggested
by the test developer and publisher” (Beaujean, 2015, p.
53). International test standards and professional ethi-
cal standards also require that psychologists be aware of
the available evidence regarding reliability and validity
of test scores (APA, 2002; British Psychological Society,
2007; ITC, 2013). To that end, this study demonstrated
that psychologists can be reasonably confident in using
the WISC-VSpain FSIQ score for clinical decisions but
cannot expect the factor index scores to be sufficiently
reliable for decisions about individuals because those
scores represent a blend of general and group abilities
as well as error and contribute little information
beyond that provided by the general factor (Beaujean,
Parkin, & Parker, 2014; Canivez, 2016; Cucina &
Howardson, 2017). Thus, the present study did not
support the interpretation methods advocated by the
publisher (Wechsler, 2015b) nor those recommended
by popular textbook authors (Sattler, Dumond, &
Coalson, 2016).

Interpretation of factor index scores should also be
informed by external validity evidence (AERA, APA, &
NCME, 2014; Hummel, 1998; Kranzler & Floyd, 2013).
DeMars (2013) predicted that differential validity would
be impaired by scores with low reliability. That predic-
tion has been supported in many studies of external
validity (Carroll, 2000). For example, there is little evi-
dence to support the proposition that factor score differ-
ences validly inform diagnosis or treatment (Braden &
Shaw, 2009; Burns, 2016; Kearns & Fuchs, 2013; Kranzler
et al., 2016; Kranzler, Floyd, Benson, Zaboski, &
Thibodaux, 2016; Reschly, 1997; Restori, Gresham, &
Cook, 2008). Likewise, multiple studies have found little
incremental validity for Wechsler factor index scores
beyond the FSIQ when predicting academic achievement
(Benson, Kranzler, & Floyd, 2016; Canivez, 2013;
Canivez, Watkins, James, Good, & James, 2014;
Glutting, Watkins, Konold, & McDermott, 2006).
Additionally, the predictive power of FSIQ scores is not
diminished by variability among factor scores (Daniel,
2007; McGill, 2016; Watkins, Glutting, & Lei, 2007). The

cumulative weight of this reliability and validity evidence
suggests that psychologists should focus their interpretive
efforts at the general factor level and exercise extreme
caution when using group factor scores to make deci-
sions about individuals.
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