195

The British

British Journal of Educational Psychology (2019), 89, 195-224 Psychological Society

© 2018 The British Psychological Society

| www.wileyonlinelibrary.com

Construct validity of the Wechsler Intelligence
Scale For Children — Fifth UK Edition: Exploratory
and confirmatory factor analyses of the 16 primary
and secondary subtests

Gary L. Canivez'*, Marley W. Watkins® and Ryan . McGill?

'Eastern lllinois University, Charleston, lllinois
2Baylor University, Waco, Texas
*William & Mary, Williamsburg, Virginia

Background. There is inadequate information regarding the factor structure of the
Wechsler Intelligence Scale for Children —Fifth UK Edition (WISC-VUK; Wechsler,2016a,
Wechsler Intelligence Scale for Children-Fifth UK Edition, Harcourt Assessment,
London, UK) to guide interpretation.

Aims and methods. The WISC-VY¥ was examined using complementary exploratory
factor analysis (EFA) and confirmatory factor analysis (CFA) for all models proposed by
Wechsler (2016b, Wechsler Intelligence Scale for Children-Fifth UK Edition: Adminis-
tration and scoring manual, Harcourt Assessment, London, UK) as well as rival bifactor
models.

Sample. The WISC-VY standardization sample (N = 415) correlation matrix was used
in analyses due to denial of standardization sample raw data.

Results. EFA did not support a theoretically posited fifth factor because only one
subtest (Matrix Reasoning) had a salient pattern coefficient on the fifth factor. A model
with four group factors and a general intelligence factor resembling the Wechsler
Intelligence Scale for Children — Fourth Edition (WISC-IV; Wechsler, 2003, Wechsler
Intelligence Scale for Children-Fourth Edition, Psychological Corporation, San Antonio,
TX, USA) was supported by both EFA and CFA. General intelligence (g) was the dominant
source of subtest variance and large omega-hierarchical coefficients supported
interpretation of the Full Scale 1Q (FSIQ) score. In contrast, the four group factors
accounted for small portions of subtest variance and low omega-hierarchical subscale
coefficients indicated that the four-factor index scores were of questionable interpretive
value independent of g. Present results replicated independent assessments of the
Canadian, Spanish, French, and US versions of the WISC-V (Canivez, Watkins, &
Dombrowski, 2016, Psychological Assessment, 28, 975; 2017, Psychological Assessment, 29,
458; Fennollar-Cortés & Watkins, 2018, International Journal of School & Educational
Psychology; Lecerf & Canivez, 2018, Psychological Assessment; Watkins, Dombrowski, &
Canivez, 2018, International Journal of School and Educational Psychology).

Conclusion. Primary interpretation of the WISC-VY¥ should be of the FSIQ as an
estimate of general intelligence.
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Avenue, Charleston, IL 61920-3099 (email: glcanivez@eiu.edu).
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The Wechsler Intelligence Scale for Children — Fifth Edition (WISC-V; Wechsler, 2014a) is
the latest edition of one of the most popular intelligence tests in applied psychological
practice and likely to be extensively used throughout the world (Oakland, Douglas, &
Kane, 2016). Based on neuropsychological research and Cattell-Horn—Carroll (CHC)
theory (CHC; Schneider & McGrew, 2012), which is an amalgam of the work of Carroll,
Cattell, and Horn (Carroll, 1993; Horn, 1989; Horn & Cattell, 1966), two Wechsler
Intelligence Scale for Children — Fourth Edition (WISC-IV; Wechsler, 2003) subtests were
deleted and three new subtests were added. In addition, all 13 subtests retained from the
WISC-IV included new and modified items (Wechsler, 2014b).

A major goal in revising the WISC-V was to separate subtests from the Perceptual
Reasoning factor (PR) into distinct Visual Spatial (VS) and Fluid Reasoning (FR) factors
making the instrument more consistent with CHC theory (Wechsler, 2014b). Accord-
ingly, Visual Puzzles (VP) and Figure Weights (FW), both adapted from the Wechsler Adult
Intelligence Scale — Fourth Edition (WAIS-IV; Wechsler, 2008), were added to be better
measure VS and FR factors, respectively. Picture Span (PSpan), which was adapted from
the Wechsler Preschool and Primary Scale of Intelligence — Fourth Edition (WPPSE-IV;
Wechsler, 2012), was also added to the WISC-V to enhance measurement of the Working
Memory (WM) factor.

wisc-vY«

The WISC-V was anglicized and adapted for the United Kingdom (WISC-V'™; Wechsler,
2016a) with few changes reportedly required in items, language, or spelling (Wechsler,
2016b). It was reported that substantial changes in item difficulty were not observed
when comparing the WISC-VU* to the US version so item order for the subtests was
retained. The resulting WISC-VUX subtests were then standardized and normed on a
sample of 415 children between the ages of 6-0 and 16-11 years who were reported to be
representative of the UK population stratified by geographic region, sex, race/ethnicity,
and parent education level. This represents a substantial reduction in normative sample
size from prior versions in the United Kingdom that may have affected sampling error
(Bridges & Holler, 2007).

Unlike the WISCIV® (Wechsler, 2004), some reliability and validity data based on the
WISC-VU standardization sample were included in the WISC-VY™ Administration and
Scoring Manual (Appendix D; Wechsler, 2016b). However, there was no separate
technical manual presenting detailed descriptions of WISC-V'® psychometric analyses.
Additionally, the 16 intelligence subtests, Full Scale 1Q (FSIQ), factor index scores, and
ancillary index scores for the WISC-V'® were identical to the US WISC-V.

Structural validity evidence

Structural validity evidence for intelligence tests is mainly derived from factor analytic
methods. Both exploratory factor analysis (EFA) and confirmatory factor analysis (CFA)
are based on the common factor model, but EFA evaluates the correlational data to suggest
a satisfactory model to describe those data, whereas CFA tests the hypothesis that a model
could generate the observed data (Carroll, 1997). Wechsler (2014b) opined that CFA ‘is
preferred to exploratory factor analysis when an explicit theory of the factor structure is
present or when there are competing models in the research literature’ (p. 77). However,
CFA methods may be vulnerable to confirmation bias or ‘unwitting selectivity in the
acquisition and use of evidence’ (Nickerson, 1998, p. 175) by more readily allowing
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researchers to disregard plausible alternative models and confirm that their preferred
‘theory-based’ model fits the data (DiStefano & Hess, 2005). For example, Table D.10 in
Wechsler (2016b) clearly shows that many of the tested models exhibited almost identical
global fit (e.g., eight separate models exhibited root mean square error of approximation
values of .04) and that Model 5d actually exhibited better fit (according to the Akaike
information criterion) than the publisher preferred Model 5e (see Figure 1).

Other researchers have noted that CFA fit indices may be biased when there are signs of
local misfit (Ropovik, 2015) or the model has been misspecified (Kline, 2016). While
global fit refers to the overall model fit, local fit relates to individual parameter estimates,
standard errors, or z values. Over-reliance on global fit indices can lead to weak factor
structures that are unlikely to replicate (Ferrando & Navarro-Gonzilez, 2018) and ‘may
account for uninterestingly small proportions of variance’ (DeVellis, 2017, p. 197).
Additionally, the statistical tests in CFA may be misleading when evaluating the
discriminant validity of factors, leading to a proliferation of empirically indistinct
constructs (Shaffer, DeGeest, & Li, 2016).

Rather than preferring one method over another, EFA and CFA should be considered
complementary rather than competing methods that can be valuable when used together
(Carroll, 1997; Haig, 2014; Keith, 2005; Tukey, 1980). For example, one complementary
advantage of EFA methods is that they do not require advanced specification of models and
thus are unbiased with respect to such prior specification (Carroll, 1985). Additionally,
CFA results can be strengthened when supported by prior EFA that have identified the
correct number of factors and indicator—factor relationships (Brown & Moore, 2012;
Carroll, 1998). Given the relative strengths and weaknesses of EFA and CFA methods,
Carroll (1995) recommended that both be employed when analysing cognitive data. Horn
(1989) also suggested that CFA methods alone might be insufficient for analysing
cognitive data. Given their influence in developing the CHC theory upon which the
WISC-V was reportedly based, it seems apposite that the recommendations of Carroll and
Horn be honoured in analyses of the WISC-V.

Problems with the publisher’s factor analyses of the WISC-V
Contrary to the recommendations of Carroll (1995) and Horn (1989), the publisher relied
exclusively on CFA for investigation of the internal structure of the WISC-V'™. Users of the
WISC-VY® were directed to the US WISC-V Technical and Interpretive Manual
(Wechsler, 2014b) for an ‘overview of confirmatory factor analysis procedures and full
details of the models tested’ (Wechsler, 2016b; p. 371), as these were identically applied
to the WISC-VUX standardization sample. Table D.10 in the WISC-V'® Administration
and Scoring Manual (Appendix D) presented CFA fit statistics for the tested models
paralleling the US WISC-V and claimed that CFA results ‘support the allocation of the
subtests to the respective indexes as in the US analyses’ (Wechsler, 2016b, p. 371).

Figure 1 presents the publisher preferred measurement model for the US WISC-V,
which was reportedly the model (Model 5¢) that was also preferred with the WISC-VUX,
This higher-order model places g as a second-order factor being loaded by five first-order
factors (Verbal Comprehension [VC], VS, FR, WM, and Processing Speed [PS]). Although
CFA global fit statistics were presented for the WISC-V'™ standardization sample data,
standardized path coefficients and the structural measurement model were not presented
so it is not possible to assess local fit for the WISC-V'™ final preferred model.

The same substantive problems identified by Canivez and Watkins (2016); Canivez
et al. (2016); Canivez, Watkins, and Dombrowski (2017); and Beaujean (2016) with the
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Figure 1. Wechsler Intelligence Scale for Children, Fifth Edition (WISC-V) higher-order measurement
model with standardized coefficients (adapted from Figure 5.1 [Wechsler, 2014b]), for the standard-
ization sample (N = 2,200). S, Similarities; VC, Vocabulary; IN, Information; CO, Comprehension; BD,
Block Design; VP, Visual Puzzles; MR, Matrix Reasoning; PC, Picture Concepts; FW, Figure Weights; AR,
Arithmetic; DS, Digit Span; PS, Picture Span; LN, Letter-Number Sequencing; CD, Coding; SS, Symbol
Search; CA, Cancellation.
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CFA methods employed by the publisher with the US WISC-V also apply to the WISC-VUX.
Among the noted problems was use of unweighted least squares estimation without
explicit justification rather than maximume-likelihood estimation as well as failure to fully
disclose details of CFA (Kline, 2016). Second, a complex CFA measurement model (cross-
loading Arithmetic on three group factors) was retained, thereby abandoning parsimony
of simple structure (Thurstone, 1947). Third, the standardized path coefficient of 1.0
between general intelligence (g) and the new FR factor is a threat to discriminant validity
and indicates that FR and g may be empirically redundant (Kline, 2016; Le, Schmidt,
Harter, & Lauver, 2010). Additionally, other areas of local fit may have been compromised.
In fact, inspection of the degrees of freedom presented in Table D.10 (Wechsler, 2016b)
indicates that there are fewer degrees of freedom than would be expected based on the
number of indicators and the number of parameters that should be freely estimated. This
suggests that some undisclosed parameters were fixed in some of the models prior to
estimation (see Beaujean, 2016). Fourth, decomposed sources of variance between the
higher-order g factor and lower-order group factors that are important for accurate
interpretation of common factors were not reported (Brown, 2015). Fifth, model-based
reliability estimates for factor scores were not provided (Watkins, 2017).

Finally, there was no consideration or testing of rival models as alternatives to the
higher-order models examined by Wechsler (2014b, 2016b). A higher-order representa-
tion of intelligence test structure is an indirect hierarchical model (Gignac, 2005, 2000,
2008) where the g factor influences subtests indirectly through full mediation through the
first-order factors (Yung, Thissen, & McLeod, 1999). This model is illustrated in Figure 1.
The higher-order model conceptualizes g as a superordinate factor and is thus an
abstraction from abstractions (Gorsuch, 1983; Thompson, 2004). Wechsler (2014b,
2016b) exclusively relied on a higher-order structural representation for analyses of the
WISC-V and WISC-V',

Bifactor model

While higher-order models have been commonly applied to assess intelligence test
structure, the bifactor model is an alternative conceptualization (illustrated in Figure 4).
Originally specified by Holzinger and Swineford (1937), bifactor models have also been
called direct hierarchical (Gignac, 2005, 2006, 2008) or nested factors models (Gustafsson
& Balke, 1993). In bifactor models, g is conceptualized as a breadth factor (Gignac, 2008)
because both the general and group factors directly influence the subtests. This means
that both g and first-order group factors are simultaneous abstractions derived from the
observed subtest indicators and therefore a less complicated (more parsimonious)
conceptual model (Canivez, 2016; Cucina & Byle, 2017; Gignac, 20006, 2008).

Bifactor models have been found to fit data as well or better than higher-order models
in more than 90% of published comparisons (Cucina & Byle, 2017). Additionally, bifactor
models have several advantages, including the direct influences of the general factor are
easy to interpret, both general and specific influences on indicators (subtests) can be
examined simultaneously, and the psychometric properties necessary for determining
scoring and interpretation of subscales can be directly examined (Canivez, 2016; Reise,
2012). Accordingly, Rodriguez, Reise, and Haviland (2016) concluded that ‘the bifactor
model is consistent with any measure found to have correlated factors or a second-order
structure and, thus, it has quite broad generalizability’ (p. 234) and Morin, Arens, Tran, and
Caci (2016) argued that ‘bifactor models provide a more flexible, realistic, and meaningful
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representation of the data whenever these dimensions are assumed to reflect a global
underlying construct’ (p. 9).

However, Keith (2005) questioned the theoretical appropriateness of bifactor models
of intelligence, stating that they are ‘not consistent with any modern theoretical
orientation’ (p. 594). Other researchers have disagreed with that conclusion. For
example, Gignac (2006, 2008) contended that the most substantial factor of a battery of
tests (i.e., g) should be directly modelled, whereas its full mediation in the higher-order
model demands explicit theoretical justification; that is, a rationale is needed for why
general intelligence should directly influence group factors but not subtests. Other
researchers have argued that a bifactor model better represents Spearman’s (1927) and
Carroll’s (1993) conceptualizations of intelligence than the higher-order model (Beaujean,
2015; Beaujean, Parkin, & Parker, 2014; Brunner, Nagy, & Wilhelm, 2012; Frisby &
Beaujean, 2015; Gignac, 20006, 2008; Gignac & Watkins, 2013; Gustafsson & Balke, 1993).
Beaujean (2015) elaborated that Spearman’s conception of general intelligence was of a
factor ‘that was directly involved in all cognitive performances, not indirectly involved
through, or mediated by, other factors’ (p. 130) and noted that ‘Carroll was explicit in
noting that a bi-factor model best represents his theory’ (p. 130). In fact, Jensen and Weng
(1994) suggested a bifactor model as the first step in their strategy for identifying general
intelligence (Jensen & Weng, 1994).

Many of these problems were previously identified and discussed with other Wechsler
versions (Canivez, 2010, 2014a; Canivez & Kush, 2013; Gignac & Watkins, 2013), but
were not addressed in the WISC-V Technical and Interpretive Manual nor in the
WISC-VYX Administration and Scoring Manual. These problems substantially challenge
the preferred measurement model promulgated by the publisher of the WISC-V and
WISC-VY¥, and it remains unclear whether the final measurement model presented by the
publisher is viable for the WISC-VUX,

Independent EFA of the WISC-V

Although EFA was not reported in the WISC-V Technical and Interpretive Manual,
independent EFA of the WISC-V has not supported the existence of five factors in the total
US WISC-V standardization sample (Canivez et al., 2016; Dombrowski, Canivez, Watkins,
& Beaujean, 2015), in four age groups (6-8, 9-11, 12-14, 15-16) with the 16 WISC-V
primary and secondary subtests (Canivez, Dombrowski, & Watkins, 2018), nor in three of
the four age groups (6-8, 9-11, and 12-14 years) with the 10 WISC-V primary subtests in
the US standardization sample (Dombrowski, Canivez, & Watkins, 2018). In these cases,
the fifth extracted factor included only one salient subtest loading. Recent EFA research
with the French WISC-V (Wechsler, 2016¢) also failed to find evidence for five factors
(Lecerf & Canivez, 2018).

These EFAs of the US WISC-V standardization sample found substantial portions of
variance apportioned to the general factor but substantially smaller portions of variance
apportioned to the group factors (VC, PR, WM, PS). Omega-hierarchical (wy) coefficients
(McDonald, 1999) ranged from .817 (Canivez et al., 2016, 2018) to .847 (Canivez et al.,
2018; Dombrowski, Canivez, et al., 2018) for the general factor but omega-hierarchical
subscale (mys) coefficients for the four WISC-V group factors ranged from .131 to .530.
Similar reliability estimates were found with the French WISC-V (Lecerf & Canivez, 2018).
Thus, independent EFA results have suggested that a four-factor solution appears to be the
best measurement model for the WISC-V.
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Independent CFA of the WISC-V

Independent CFA conducted with the 16 WISC-V primary and secondary subtests from
the total US WISC-V standardization sample (Canivez, Watkins, et al., 2017) found all five
of the higher-order models that included five first-order factors (including the final WISC-V
model presented in the WISC-V Technical and Interpretative Manual) resulted in
statistically inadmissible solutions (i.e., negative variance estimates for the FR factor)
potentially caused by misspecification of the models. A bifactor model that included five
first-order factors produced an admissible solution and fit the standardization data well,
but local fit problems were identified where the Matrix Reasoning, Figure Weights, and
Picture Concepts subtests did not evince statistically significant loadings on the FR factor.
Consequently, the bifactor model with four group factors (VC, PR, WM, PS) was preferred
based on the combination of statistical fit and Wechsler theory and provided comple-
mentary results to previous WISC-V EFA results (Canivez et al., 2016) with a dominant
general intelligence dimension and weak group factors with limited reliable measurement
beyond g.

However, one study (H. Chen, Zhang, Raiford, Zhu, & Weiss, 2015) reported factorial
invariance of the final publisher preferred WISC-V higher-order model with five-group
factors across gender, although it did not examine invariance for rival higher-order or
bifactor models. Likewise, Reynolds and Keith (2017) reported WISC-V invariance across
age groups, but the model they examined for invariance was an oblique five-factor model,
which ignores general intelligence altogether.

Reynolds and Keith (2017) also explored numerous post hoc modifications for first-
order models with five factors and then for both higher-order and bifactor models with
five-group factors in an attempt to better understand WISC-V measurement. Based on
these explorations, their best-fitting WISC-V higher-order model was different from the
publisher preferred model, yet it still produced a standardized path coefficient of .97 from
g to Fluid Reasoning, suggesting that these dimensions may be isomorphic. In agreement
with prior independent CFA, decomposed variance estimates from this higher-order
model showed that the WISC-V subtests primarily reflected variance from g with small
portions of variance unique to the group factors. An alternative bifactor model added a
covariance estimate between VS and FR factors that ‘recognizes the nonverbal related
nature of these two factors’ (p. 38). However, there was no justification for why the
non-verbal PS factor was not also recognized. A similar bifactor model with correlated FR
and VS factors was tested with the Canadian and Spanish WISC-V standardization samples
(Wechsler, 2014c, 2015). It was not superior to the bifactor model with four group factors
in the Canadian sample (Watkins et al., 2018) but statistically equivalent to the four-factor
solution with the Spanish sample, albeit with low discriminant validity and concomitant
interpretational confounding (Fennollar-Cortés & Watkins, 2018).

Post hoc cross-loadings and correlated disturbance and error terms are frequently
invoked in CFA models produced by researchers that prefer a higher-order structure for
Wechsler scales. However, such explorations may capitalize on chance and sample size
(MacCallum, Roznowski, & Necowitz, 1992). Additionally, it is rare for such parameters to
be specified a priori. Instead, these previously unmodelled complexities are later added
iteratively in the form of post hoc model adjustments designed to improve model fit or
remedy issues encountered with local fit. However, Cucina and Byle (2017) suggested that
specification of these parameters may be problematic due to lack of conceptual grounding
in previous theoretical work and dangers of hypothesizing after results are known

(HARKIing).
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In summary, the factorial structure of WISC-V standardization samples has been
investigated by several independent researchers via CFA and results have been
inconsistent. Some researchers favoured a traditional Wechsler four-factor model, while
others preferred a CHC-based five-factor model. However, all studies have found a
dominant general intelligence dimension and weak group factors with limited reliable
measurement beyond g.

Independent CFA of the WISC-IVYX

To date, there are no extant studies, technical supplements, or technical manuals
providing EFA or CFA information with the WISCIV'® or WISC-VU¥ standardization
samples (Wechsler, 2004, 2016a). Only two studies have examined the latent factor
structure of the WISC-IVYX, and both applied CFA to data from Irish children referred for
evaluation of learning difficulties (Canivez, Watkins, Good, James, & James, 2017;
Watkins, Canivez, James, Good, & James, 2013). In the first study, Watkins et al. (2013)
analysed the 10 core subtests and found a four-factor structure (VC, PR, WM, PS). In the
second study (Canivez, Watkins, Good, et al., 2017), all 15 WISC-IV'X subtests were
analysed to allow a comparison of CHC-based models with five factors to Wechsler-based
models with four factors. Meaningful differences in fit were not observed between the
CHC and Wechsler representations, leading the researchers to favour the more
parsimonious Wechsler model. Both studies found that g accounted for the largest
proportion of explained variance, and the group factors accounted for small to miniscule
portions of explained variance. Both studies also found that FSIQ scores were relatively
reliable (wy =2 .85), while the group factor index scores were not reliable after removing
the stabilizing influence of g (wys =2 .14 to .43).

Research aims

Understanding the structural validity of tests is essential for evaluating interpretability of
test scores (American Educational Research Association, American Psychological
Association, & National Council on Measurement in Education, 2014), and detailed
information regarding evidence of the WISC-V'™ structure is necessary to properly
interpret score results according to the Code of Good Practice for Psychological Testing
of the British Psychological Society (2007, 2016) as well as the Guidelines for Test Use of
the International Test Commission (2013). Given the absence of EFA, questionable CFA
methods identified in the WISC-V Technical and Interpretive Manual (Wechsler, 2014b)
that were also used with the WISC-VUX and lack of details regarding validity evidence for
the WISC-V'X provided in the Administration and Scoring Manual (Wechsler, 2016b);
the present study: (1) used best practices in EFA (Watkins, 2018) to examine the
WISC-VY factor structure suggested by the 16 primary and secondary subtest
relationships, (2) examined the WISC-VY® factor structure using CFA with customary
maximum-likelihood estimation, (3) compared alternative bifactor models to higher-order
models as rival explanations, (4) decomposed factor variance sources in EFA and CFA, and
(5) estimated model-based reliabilities. The information afforded by these analyses is
essential for users of the WISC-V'® to determine the value of the scores and score
comparisons provided in the WISC-V'X and interpretive guidelines promoted by the
publisher (Beaujean & Benson, 2019).
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Method

Participants

The request for WISC-VUX standardization sample raw data to conduct these independent
analyses was denied without rationale by NCS Pearson, Inc. Absent raw data, the summary
statistics (correlations and descriptive statistics) provided in Table D.9, Appendix D, in
the WISC-V'® Administration and Scoring Manual (Wechsler, 2016b) were used in the
present analyses. These correlations were reportedly produced by participants who were
members of the full WISC-VV standardization sample (V = 415) of children that ranged in
age from 6 to 16 years. Demographic characteristics provided by Wechsler (2016b)
illustrate the demographic representation of the UK standardization sample obtained
using stratified proportional sampling across variables of age, sex, race/ethnicity, parental
education level, and geographic region.

Instrument

The WISC-VY™ (Wechsler, 2016a) is an individually administered general intelligence test
composed of 16 subtests expressed as scaled scores (M = 10, SD = 3). It includes seven
‘Primary’ subtests (Similarities [SI], Vocabulary [VC], Block Design [BD], Matrix
Reasoning [MR], Figure Weights [FW], Digit Span [DS], and Coding [CD]) that produce
the FSIQ score and three additional ‘Primary’ subtests (Visual Puzzles [VP], Picture Span
[PSpan], and Symbol Search [SS]) that combine with the seven FSIQ subtests to produce
the five-factor index scores (two subtests each for Verbal Comprehension [VCI], Visual
Spatial [VSI], Fluid Reasoning [FRI], Working Memory [WMI], and Processing Speed
[PSID. There are six ‘Secondary’ subtests (Information [IN], Comprehension [CO],
Picture Concepts [PC], Arithmetic [AR], Letter-Number Sequencing [LN], and Cancella-
tion [CN]) that are used either for substitution in FSIQ estimation or in estimating the
General Ability Index and Cognitive Proficiency Index scores. Index scores and FSIQ
scores are expressed as standard scores (M = 100, SD = 15).

Analyses

Exploratory factor analysis

The 16 WISC-V"™ primary and secondary subtest correlation matrix included in Table D.9
of Wechsler (2016b, p. 370) was used to conduct EFAs. Although the published matrix
includes correlations rounded to only two decimals, Carroll (1993) found that, ‘little
precision is lost by using two-decimal values’ (p. 82).

The scree test (Cattell, 1966), standard error of scree (SEgcree; ZOski & Jurs, 1996),
parallel analysis (PA; Horn, 1965), and minimum average partials (MAP; Velicer, 1976)
criteria were considered when determining the number of factors to extract. Previous
research and publisher theory suggested that four and five factors, respectively, should
also be considered (Canivez et al., 2016; Lecerf & Canivez, 2018; Wechsler, 2016b).

Principal axis extraction and promax rotation were accomplished with SPSS 24 for
Macintosh. Other analyses were completed with open source software (Watkins, 2000,
2004, 2007). For a factor to be considered viable at least two subtests required salient
loadings (>.30; McDonald, 1999). Then, to disentangle the contribution of first- and
second-order factors, the Schmid and Leiman procedure was applied (SL; Schmid &
Leiman, 1957). Carroll (1995) insisted on use of the SL transformation of EFA loadings to
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apportion subtest variance to the first-order and higher-order dimensions because
intelligence test subtests are influenced by both first-order factors and the higher-order g
factor. Adhering to Carroll’s (1995) directive, the SL procedure has been successfully
applied in numerous studies of cognitive ability tests (e.g., Canivez, 2008; Canivez et al.,
2016; Dombrowski, Watkins, & Brogan, 2009; Golay & Lecerf, 2011; Lecerf & Canivez,
2018; Watkins, 2006).

Confirmatory factor analysis

EQS 6.3 (Bentler & Wu, 2016) was used to conduct CFA using maximum-likelihood
estimation. Because of the absence of standardization sample raw data, covariance
matrices were reproduced for CFA using the correlation matrix, means, and standard
deviations from the total WISC-V'X standardization sample presented by Wechsler
(Table D.9, Appendix D, Wechsler, 2016b).

The structural models specified in Table 5.3 of the WISC-V Technical and
Interpretative Manual (Wechsler, 2014b) were also examined in CFA with the WISC-
VUK (Table D.10; Wechsler, 2016b) and are reproduced in Figures 2 and 3 with the
addition of alternative bifactor models that were not included in analyses reported by
Wechsler (2014b, 2016b). Model 1 is a unidimensional g factor model loaded by all 16
subtests. Bifactor models were examined for all models that did not include cross-loadings
on multiple factors. Because the VS factor was measured by only two subtests, those two
loadings were constrained to equality when estimating bifactor models to ensure
identification (Little, Lindenberger, & Nesselroade, 1999).

Although there are no universally accepted cut-off values for approximate fit indices
(McDonald, 2010), overall global model fit was evaluated using the comparative fit index
(CFD and the root mean square error of approximation (RMSEA). Higher values indicate
better fit for the CFI, whereas lower values indicate better fit for the RMSEA. Applying the
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Figure 2. WISC-VY" Primary and Secondary Subtest configuration for confirmatory factor analysis
(CFA) models with two to four factors. Sl, Similarities; VC, Vocabulary; IN, Information; CO,
Comprehension; BD, Block Design; VP, Visual Puzzles; MR, Matrix Reasoning; FW, Figure Weights; PC,
Picture Concepts; AR, Arithmetic; DS, Digit Span; PS, Picture Span; LN, Letter-Number Sequencing; CD,
Coding; SS, Symbol Search; CA, Cancellation. All models include a higher-order general factor except for
the bifactor models.
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Figure 3. WISC-V"S Primary and Secondary Subtest configuration for confirmatory factor analysis
(CFA) models with five factors. Sl, Similarities; VC, Vocabulary; IN, Information; CO, Comprehension;
BD, Block Design; VP, Visual Puzzles; MR, Matrix Reasoning; FW, Figure Weights; PC, Picture Concepts;
AR, Arithmetic; DS, Digit Span; PS, Picture Span; LN, Letter-Number Sequencing; CD, Coding; SS, Symbol
Search; CA, Cancellation. All models include a higher-order general factor except for the bifactor models.

Hu and Bentler (1999) combinatorial heuristics, criteria for adequate model fit were
CFI > .90 along with RMSEA < .08. Good model fit required CFI > .95 with RMSEA < .06.
Additionally, the Akaike Information Criterion (AIC) was considered. AIC does not have a
meaningful scale but the model with the smallest AIC value is most likely to replicate
(Kline, 2016). For a model to be considered superior, it had to exhibit good overall fit and
display meaningfully better fit (ACFI > .01, ARMSEA < .015, and AAIC < 10) than
alternative models (Burnham & Anderson, 2004; F. Chen, 2007; Cheung & Rensvold,
2002). All models were examined for presence of local fit problems (e.g., negative, too
high, or too low standardized path coefficients, coefficients exceeding limits [—1, 1],
negative variance estimates) as models should never be retained ‘solely on global fit
testing’ (Kline, 2016, p. 461).

Model-based reliabilities

Model-based reliabilities were estimated with omega coefficients (Reise, 2012; Reise,
Bonifay, & Haviland, 2013; Rodriguez et al., 2016). McDonald (1999) described several
omega coefficient variants based on decomposing total test variance into common and
unique components: (1) omega () that is similar to coefficient alpha in that it indexes the
proportion of variance in a unit-weighted score attributable to all sources of common
variance; (2) omega-hierarchical (oy) that estimates the reliability of a unit-weighted total
score (i.e., FSIQ) after removing the influence of the group factors; and (3) omega-
hierarchical subscale (wys) that estimates the reliability of a unit-weighted group factor
score (i.e., VCI, PRI after removing the influence of all other factors. Omega coefficients
make fewer and more realistic statistical assumptions than coefficient alpha and have been
recommended for use with multidimensional tests like the WISC-V'™™ (Watkins, 2017).
Omega estimates may be obtained from CFA bifactor solutions or decomposed variance
estimates from higher-order models and were produced using the Omega program
(Watkins, 2013), which is based on the tutorial by Brunner et al. (2012). Omega
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coefficients should at a minimum exceed .50, but .75 is preferred (Reise, 2012; Reise
et al., 2013; Rodriguez et al., 2016).

Results

Exploratory factor analysis

The Kaiser—Meyer—Olkin measure of sampling adequacy of .924 far exceeded the .60
minimum standard (Kaiser, 1974) and Bartlett’s test of sphericity (Bartlett, 1954),
¥ = 2,560.45, p < .0001; indicated that the WISC-V'™ correlation matrix was not
random. Without standardization sample raw data, it was not possible to estimate
skewness or kurtosis or determine whether multivariate normality existed, but principal
axis extraction does not assume normality. Therefore, the correlation matrix was deemed
appropriate for EFA.

Regarding the number of factors to extract, Scree, PA (see Figure S1), and MAP criteria
suggested two, SEscree indicated three, prior research with the WISC-V indicated that
four would suffice, and the WISC-V'¥ publisher claimed five factors. Wood, Tataryn, and
Gorsuch (1996) opined that it is better to overextract than underextract, so EFA began by
extracting five factors and then sequentially examined the adequacy of models with four,
three, and two factors.

Extracting five WISC-V'™ factors (see Table S1) produced a fifth factor with only one
salient factor pattern coefficient (MR). Thus, MR and FW did not share sufficient common
variance to constitute the FR dimension posited by the publisher. Furthermore, PC failed
to achieve a salient pattern coefficient on any factor. This pattern of results is emblematic
of overextraction (Gorsuch, 1983; Wood et al., 1996), and the five-factor model was
judged inadequate.

Table 1 presents the results of extracting four WISC-V'® factors and reveals four
robust factors with theoretically consistent subtest associations resembling the traditional
Wechsler structure. None of the subtests loaded saliently on more than one factor and the
moderate-to-high factor correlations (.357 to .699) signalled the presence of a general
intelligence factor (Gorsuch, 1983).

For the three-factor model, the PR and WM factors merged, leaving distinct VC and PS
factors, but no subtest cross-loadings were observed. The two-factor model showed
merging of VC, PR, and WM factors, leaving only the separate PS factor. The two- and
three-factor models (see Table S2) clearly displayed fusion of theoretically meaningful
constructs that is symptomatic of underextraction, thereby rendering them unsatisfactory
(Gorsuch, 1983; Wood et al., 1996).

Given these results, the four-factor EFA solution appeared to be the most appropriate
and was accordingly subjected to second-order EFA that was transformed with the SL
procedure (see Table 2). Following SL transformation, all WISC-VE subtests were
properly associated with their theoretically proposed factors (Wechsler model). The
hierarchical g factor accounted for 31.7% of the total variance and 65.3% of the common
variance. The general factor also accounted for between 5.3% (CA) and 45.3% (IN) of
individual subtest variability. For comparison, results of SL transformation of five-factor
EFA solution are presented in Table S3 and illustrate how little unique variance the fifth
factor provides (3.4% total variance, 6.4% common variance).

Omega coefficients were estimated based on the SL results in Table 2. The oy
coefficient for a unit-weighted FSIQ score based on all indicators (.811) was high;
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however, the oy coefficients for four unit-weighted WISC-VVX factor index scores (VCI,

WMI, PRI, PSI) based on all indicators were considerably lower (.145—.469).

Confirmatory factor analysis

Global fit

Results from CFAs for the 16 WISC-V'™ primary and secondary subtests are presented in
Table 3. Models 1 and 2 were inadequate due to low CFI and too high RMSEA values.
Model 3 was adequate, but all models (both higher-order and bifactor) that included
four- or five-group factors produced global fit statistics that indicated good fit to these data.
Bifactor models where AR was not cross-loaded were often meaningfully better than their
higher-order versions when considering ACFA values, but meaningful differences in
RMSEA were only observed for Model 4b bifactor and Model 4e bifactor compared to their
higher-order versions. In contrast, all bifactor models were meaningfully superior to their
higher-order versions when considering AAIC and therefore more likely to replicate.

Local fit

Although several models achieved good global fit, assessment of local fit identified
numerous problems. Table 4 presents each of the models that exhibited local fit problems
(i.e., non-statistically significant standardized path coefficients, negative standardized
path coefficients, and negative variance estimates) or issues with either very low or very
high standardized path coefficients (DiStefano & Hess, 2005). Many of these models were
thus considered inadequate. For example, the publisher’s preferred model (5¢ higher-
order) produced good global fit to these data (CFI = .979, RMSEA = .036), but the
standardized path coefficient (.063) of AR on FR was not statistically significant, the
standardized path coefficient (.192) of AR on VC was statistically significant but low, and
the removal of the non-statistically significant AR loading on FR produces Model 5d.

Model selection

Model 4a bifactor displayed the best fit according to CFI, RMSEA, and AIC indices, but it
was not meaningfully superior to bifactor Models 4b, 4e, 5a, and 5b. However, local fit
problems with those alternative models (see Table 4) weighed against their selection.
Thus, Model 4a bifactor (Figure 4) appears the best model to represent WISC-V'™
measurement despite the weak standardized path coefficients of PC on PR and PSpan on
WM. Model 4a bifactor did not manifest any negative standardized path coefficients or
negative variance estimates and was consistent with CFA results from the WISC-IV
(Canivez, Watkins, Good, et al., 2017; Watkins et al., 2013) as well as the current EFA
results from the WISC-VVX,

Variance and reliability

Table 5 presents sources of variance for Model 4a bifactor from the 16 WISC-VV* primary
and secondary subtests. Most subtest variance was associated with the general
intelligence dimension, and substantially smaller portions of variance were uniquely
associated with the four WISC-V'® group factors. The oy coefficient of .829 for a
unit-weighted FSIQ score with all indicators was robust, but the myg coefficients for four
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General
intelligence

Perceptual
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Verbal Working Processing
comprehension memory speed

Figure 4. Bifactor measurement model (4a Bifactor), with standardized coefficients, for WISC-V“¢
standardization sample (N = 415) 16 subtests. Sl, Similarities; VC, Vocabulary; IN, Information; CO,
Comprehension; BD, Block Design; VP, Visual Puzzles; MR, Matrix Reasoning; FW, Figure Weights; PC,
Picture Concepts; AR, Arithmetic; DS, Digit Span; PS, Picture Span; LN, Letter-Number Sequencing; CD,
Coding; SS, Symbol Search; CA, Cancellation. *p < .05.

unit-weighted WISC-VYE factor scores (VCI, PRI, WMI, PSD with all indicators were
considerably lower, ranging from .142 (WM) to .452 (PS). For comparison, Table S4
presents variance sources for Model 4a higher-order illustrated in Figure S2. As shown in
Table S4, and identical to the bifactor model, only the general intelligence dimension
conveyed meaningful portions of true-score variance, while the four group factors
conveyed little unique measurement and included low wys coefficients.

Discussion

Results from the present EFA and CFA challenge the WISC-V'S structure promoted in the
WISC-VUX Administration and Scoring Manual. Exploratory factor analysis results failed
to support a five-factor model as only the MR subtest had a salient loading on the fifth
factor. In contrast, four robust factors with theoretically consistent subtest associations
resembling the traditional Wechsler structure emerged from the EFA. The present results
replicated the outcomes of EFA studies of the WISC-V in the United States and in other
countries in regard to the inadequate fifth factor (Canivez et al.,2016,2018; Dombrowski,
Canivez, Watkins, & Beaujean, 2015; Dombrowski, Canivez, et al., 2018; Lecerf &
Canivez, 2018). Of interest, the AR subtest was the sole salient loading on the fifth factor in
the French standardization sample but FW, MR, and VP subtests were singlets in the US
sample depending on examinee age.

When modelling five first-order factors and one higher-order factor with all 16 primary
and secondary subtests as promoted by the publisher, CFA approximate fit statistics
appeared to be supportive. The publisher preferred WISC-V'® model (Model 5e higher-
order) included three cross-loadings of AR on VC, FR, and WM, but the standardized path
coefficient of AR to FR was not statistically significant in the present study, and although
the standardized path coefficient of AR to VC was statistically significant, it was low.
Additionally, the FR factor loaded at .98 on the g factor, making those factors empirically
redundant. These local misfits indicate that Model 5e higher-order (publisher preferred)
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was not the best model. In contrast, CFA results supported a bifactor version of the
WISC-VYX structure with four group factors akin to the traditional Wechsler represen-
tation. That model exhibited no negative standardized path coefficients nor negative
variance estimates and was also consistent with results from the WISCIVVX. However,
that model was flawed by weak loadings of the PC and PSpan subtests on their respective
factors. Similar results were observed with the Canadian, French, Spanish, and US WISC-V
standardization samples where the publisher preferred Model 5e higher-order was not the
best-fitting model, the FR and g factors were empirically redundant, and a bifactor version
of the traditional Wechsler structure was preferred (Canivez, Watkins, et al., 2017,
Fennollar-Cortés & Watkins, 2018; Lecerf & Canivez, 2018; Watkins et al., 2018).

Model-based reliability estimates from both WISC-V"® EFA and CFA results indicated
that the FSIQ score was sufficiently reliable for individual interpretation (Md oy = .82).
Although the o coefficients for the WISC-V'X factor index scores were all above .70, the
mys estimates for those index scores were generally low (Md = .21; see Tables 2 and 5).
This demonstrates that most of the factor index score reliability could be attributed to the
general intelligence factor rather than the group factors. Scores with such low mgs
estimates are extremely limited for measuring unique cognitive constructs (Brunner
et al.,2012; Reise, 2012; Reise et al., 2013) and to interpret factor index scores with such
low mys values ‘as representing the precise measurement of some latent variable that is
unique or different from the general factor, clearly, is misguided’ (Rodriguez et al., 2016,
p. 225).

Thus, the WISC-V'™ factor index scores likely possess too little reliability beyond the
influence of general intelligence to support confident clinical interpretation (Reise, 2012;
Reise et al., 2013; Rodriguez et al., 2016). This outcome was predicted by Beaujean and
Benson (2019), who contended that a strategy of creating cognitive instruments that
measure both a general attribute (i.e., g) as well as more specific attributes (i.e., group
factors) will result ‘in creating less reliable scores of the specific attributes’ (p. 5).

These EFA, CFA, and model-based reliability results are not unique to the WISC-V or
WISC-VY® nor to national standardization samples. Similar results have been observed in
studies of the WISC-IV (Bodin, Pardini, Burns, & Stevens, 2009; Canivez, 2014b; Gomez,
Vance, & Watson, 2016; Keith, 2005; Styck & Watkins, 2016; Watkins, 2006, 2010) and
with other Wechsler scales (Canivez & Watkins, 2010; Canivez, Watkins, Good, et al.,
2017; Gignac, 2005, 2006; Golay & Lecerf, 2011; McGill & Canivez, 2016, 2017; Watkins &
Beaujean, 2014; Watkins et al., 2013). Nor are these results unique to Wechsler scales as
similar findings have been reported with other cognitive scales (Canivez, 2008, 2011;
Canivez, Konold, Collins, & Wilson, 2009; Canivez & McGill, 2016; Cucina & Howardson,
2017; DiStefano & Dombrowski, 2006; Dombrowski, 2013; Dombrowski, McGill, &
Canivez, 2017; Dombrowski & Watkins, 2013; Dombrowski et al., 2009; Dombrowski,
McGill, et al., 2018; Nelson & Canivez, 2012; Strickland, Watkins, & Caterino, 2015).

Limitations

The present study examined EFA and CFA for the full WISC-V"® standardization sample,
but it is possible that different age groups within the WISC-V'® standardization sample
might produce somewhat different results. Exploratory factor analysis and CFA with
different age groups should be conducted to examine structural invariance across age.
Other demographic variables where invariance should be examined include sex/gender
and socioeconomic status. However, the WISC-V"® standardization sample is consider-
ably smaller than the WISC-IV"™ standardization sample so sampling error may affect such
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estimates and additional studies with new and much larger samples may be required.
Further, the only available correlation matrix for the WISC-V'* standardization sample is
for the total sample (no separate matrices by age were provided by the publisher) so
standardization sample raw data would be needed, something denied by NCS Pearson,
Inc. for the present study.

Also, the present analyses were of the standardization sample and thus may not
generalize to other populations such as clinical groups or independent samples of non-
clinical groups, participants of different races/ethnicities, or language minorities. While
structural invariance across gender has been reported for the US WISC-V (H. Chen et al.,
2015), bifactor models and models with fewer group factors were not examined so
invariance of alternative models should also be examined across gender.

Of course, the results of the present study only pertain to the latent factor structure and
do not fully test the construct validity of the WISC-V'X, which would involve examinations
of relations with external criteria (Canivez, 2013a). Examinations of incremental predictive
validity (Canivez, 2013b; Canivez, Watkins, James, James, & Good, 2014; Glutting, Watkins,
Konold, & McDermott, 2006; Nelson, Canivez, & Watkins, 2013) to determine whether
reliable achievement variance is incrementally accounted for by the WISC-V'* factor index
scores beyond that accounted for by the FSIQ score (or through latent factor scores [see
Kranzler, Benson, & Floyd, 2015]) and diagnostic utility (see Canivez, 2013a) studies should
also be examined. Given the small portions of true-score variance uniquely contributed by
the four group factors in the WISC-V'® standardization sample, it seems unlikely that
WISC-VYX factor index scores will provide meaningful value (DeMars, 2013).

Finally, it has been suggested that fit indices in bifactor models might be statistically
biased when compared to higher-order models due to unmodelled complexities (Murray
& Johnson, 2013), proportionality constraints (Gignac, 2016), or violation of tetrad
constraints (Mansolf & Reise, 2017). However, Morgan, Hodge, Wells, and Watkins (2015)
found in their Monte Carlo simulations that the bifactor model ‘did not generally produce a
better fit when the true underlying structure was not a bi-factor one’ (p. 15). There is no
satisfactory statistical solution as to whether or why bifactor models might be biased
(Mansolf & Reise, 2017). Fortunately, the preferred model (higher-order vs. bifactor) can
be selected based on the purpose of measurement. As described by Murray and Johnson
(2013), both models will provide a good estimate of g, the higher-order model may be
more appropriate for testing factor to subtest paths in measurement models, and the
bifactor model should be preferred when ‘pure’ measures of specific factors are desired
because factor scores from a higher-order model ‘conflate g and specific variance, so any
associations with these scores will reflect (to possibly a very large extent) g rather than just
the target specific ability’ (p. 420). Given that scores from the WISC-V"* will likely be used
by psychologists to provide an estimate of general ability and to interpret cognitive
strengths and weaknesses operationalized through the factor index scores as recom-
mended by the publisher and popular textbooks (Sattler, Dumond, & Coalson, 2016;
Wechsler, 2016b), it has been argued that a bifactor representation of its structure should
be preferred (Murray & Johnson, 2013).

Conclusions

The WISC-VYX, as presented in the WISC-VY® Administration and Scoring Manual,
appears to be overfactored (Beaujean & Benson, 2019; Frazier & Youngstrom, 2007) and
the robust replication of previous EFA and CFA findings from the US WISC-V (Canivez
et al., 2016; Canivez, Watkins, et al., 2017; Canivez, Watkins, Good, et al., 2017 Canivez
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et al., 2018; Dombrowski et al., 2015), Canadian WISC-V (Watkins et al., 2018), French
WISC-V (Lecerf & Canivez, 2018), and Spanish WISC-V (Fennollar-Cortés & Watkins,
2018) further support that conclusion. The attempt to divide the PR factor into separate
VS and FR factors appears to have been unsuccessful and therefore standard scores and
comparisons for FRI scores are potentially misleading. If the publisher wishes to measure
separate VS and FR factors then subtests that are stronger measures of the VS and FR
factors and simultaneously poorer measures of g will be required; but, given the
dominance of general intelligence in most cognitive subtests, there may still be too little
unique variance captured to make such an endeavour fruitful (Rodriguez et al., 2016).

As a result of the current study, psychologists in the United Kingdom and Ireland now
have information to properly interpret WISC-V'® scores according to the Code of Good
Practice for Psychological Testing (British Psychological Society, 2007, 2016) and the
Guidelines on Test Use (International Test Commission, 2013). Specifically, the WISC-VUE
may be best represented by a four-factor structure akin to the prior WISC-IV represen-
tation with factor index scores that contribute little reliable information beyond g because
they conflate the variance from general intelligence and group factors and cannot,
therefore, be interpreted as pure measures of Verbal Comprehension, Perceptual
Reasoning, Visual Spatial Reasoning, Fluid Reasoning, Working Memory, or Processing
Speed. In contrast, the FSIQ exhibited good reliability across factor methods and samples.
In agreement with Dombrowski, Canivez, et al. (2018), Dombrowski, McGill, et al.
(2018), we recommend that ‘primary interpretive emphasis should be placed upon the
FSIQ with only.. .secondary, yet extremely cautious, interpretive emphasis with the
WISC-V index scores’ (p. 100).
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Supporting Information

Additional supporting information may be found online in the supporting information
section at the end of the article:

Figure S1. Scree plots for Horn’s parallel analysis for WISC-V'* standardization
sample (V = 415).

Figure S2. Higher-order measurement model (4a), with standardized coefficients, for
WISC-VYS standardization sample (N = 415) 16 Subtests.

Table S1. Wechsler Intelligence Scale for Children-Fifth UK Edition (VVISC—VUK)
exploratory factor analysis: Five oblique factor solution for the total standardization
sample (V = 415).

Table S2. Wechsler Intelligence Scale for Children-Fifth UK Edition (WISC-VU¥)
exploratory factor analysis: Two and three oblique factor solutions for the total
standardization sample (N = 415).

Table S3. Sources of variance in the Wechsler Intelligence Scale for Children-Fifth UK
Edition (WISC-V'™) for the total standardization sample (N = 415) according to an
exploratory SL bifactor model (orthogonalized higher-order factor model) with five
first—order factors.

Table S4. Sources of variance in the WISC-VX 16 subtests for the total standardization
sample (V = 415) according to CFA higher-order model 4a.




