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The Wechsler Preschool and Primary Scale of Intelligence—Fourth Edition (WPPSI-
IV; Wechsler, 2012) represents a substantial departure from its predecessor, including
omission of 4 subtests, addition of 5 new subtests, and modification of the contents of
the 5 retained subtests. Wechsler (2012) explicitly assumed a higher-order structure
with general intelligence (g) as the second-order factor that explained all the covaria-
tion of several first-order factors but failed to consider a bifactor model. The WPPSI-IV
normative sample contains 1,700 children aged 2 years and 6 months through 7 years
and 7 months, bifurcated into 2 age groups: 2:6–3:11 year olds (n � 600) and 4:0–7:7
year olds (n � 1,100). This study applied confirmatory factor analysis to the WPPSI-IV
normative sample data to test the fit of a bifactor model and to determine the reliability
of the resulting factors. The bifactor model fit the WPPSI-IV normative sample data as
well as or better than the higher-order models favored by Wechsler (2012). In the
bifactor model, the general factor accounted for more variance in every subtest than did
its corresponding domain-specific factor and the general factor accounted for more total
and common variance than all domain-specific factors combined. Further, the domain-
specific factors exhibited poor reliability independent of g (i.e., �h coefficients of .05
to .33). These results suggest that only the general intelligence dimension was suffi-
ciently robust and precise for clinical use.
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Wechsler intelligence scales are widely used
throughout the world (Flanagan & Kaufman,
2009). For example, the third edition of the
Wechsler Intelligence Scale for Children (WISC–
III) was adapted for at least 12 locations (Georgas,
van de Vijver, Weiss, & Saklofske, 2003) and the
Wechsler Intelligence Scale for Children—Fourth
Edition (WISC-IV; Wechsler, 2003) have been
adapted and standardized in seven countries (Gré-
goire et al., 2008). Likewise, the Wechsler Pre-
school and Primary Scale of Intelligence (WPPSI)
has been adapted for use in other countries (Liu &
Lynn, 2011).

The fourth edition of the WPPSI (WPPSI-IV;
Wechsler, 2012), was recently completed in the
United States. As with new editions of other
Wechsler instruments (Coalson & Weiss,
2002), the WPPSI-IV represents a substantial
departure from its predecessor, the third edition
of the WPPSI (WPPSI-III; Wechsler, 2002).
Specifically, the WPPSI-IV removed four sub-
tests, added five new subtests, and modified the
contents of the five retained subtests. Differ-
ences between a test and its revision are “ex-
pected and derive from differing procedures,
measurement scales, and normative bases” (L.
D. Nelson, 2000, p. 235). Consequently, valid-
ity evidence from prior versions of the WPPSI
(e.g., Sattler, 2008) may not be applicable to the
WPPSI-IV (Reise, Waller, & Comrey, 2000).
Accordingly, Wechsler (2012) presented exten-
sive validity evidence for the WPPSI-IV, in-
cluding evidence on its structural validity.

Given that an instrument’s structural validity
evidence involves a comparison of how well its
scores measure the trait(s) it intends to measure

This article was published Online First November 4,
2013.

Marley W. Watkins and A. Alexander Beaujean, Depart-
ment of Educational Psychology, Baylor University.

Correspondence concerning this article should be ad-
dressed to Marley W. Watkins, Department of Educational
Psychology, Baylor University, Waco, TX 76798-7301.
E-mail: Marley_Watkins@baylor.edu

School Psychology Quarterly © 2013 American Psychological Association
2014, Vol. 29, No. 1, 52–63 1045-3830/14/$12.00 DOI: 10.1037/spq0000038

52

http://dx.doi.org/10.1037/spq0000038.supp
mailto:Marley_Watkins@baylor.edu
http://dx.doi.org/10.1037/spq0000038


(American Educational Research Association,
American Psychological Association, & Na-
tional Council on Measurement in Education,
1999), it is vital that alternative structural mod-
els be examined (Floyd & Widaman, 1995). For
the WPPSI-IV, Wechsler (2012) explicitly as-
sumed a higher-order factor structure with gen-
eral intelligence (g) as the second-order factor
that explained the covariation among the first-
order factors. In this model, the relationship
between g and every subtest (i.e., observed vari-
able) is fully mediated by the first-order factors
(Yung, Thissen, & McLeod, 1999) and g is
viewed as a superordinate construct (Gignac,
2006). See Figure 1 for an example of a second-
order factor structure of the WPPSI-IV subtests.

Because first-order factors are abstractions of
measured variables, second-order factors “are
abstractions of abstractions even more removed
from the measured variables” (Thompson,
2004, p. 81). Gorsuch (1983, p. 245) argued that
“basing interpretations upon interpretations” in
this manner is undesirable and recommended
that factors be directly related to observed vari-
ables. This can be accomplished with a bifactor
model (Holzinger & Swineford, 1937), some-
times called a nested-factors (Gustafsson & Un-
dheim, 1996) or direct hierarchical (Gignac,
2006) model, which specifies that every factor
has a direct effect on the observed variables.
Gignac (2006, p. 85) argued that it is “more
congruent and reasonable to specifically model
the most significant factor of a battery of tests
(i.e., “g”) directly, rather than indirectly,
through first-order factors.” In a typical bifactor
model, each subtest is directly and indepen-
dently influenced by two factors: one general
factor and one domain-specific first-order fac-
tor.1 g is conceptualized as a breadth factor in
the bifactor model, which is consistent with
Spearman’s (1927) conceptualization of general
intelligence (cf. Carroll, 1996; for an alternative
interpretation, see Reynolds & Keith, 2013).
See Figure 2 for an example of a bifactor struc-
ture of the WPPSI-IV subtests.

Reise (2012) argued that the bifactor model is
a viable candidate for measures that have dem-
onstrated good fit to a second-order model, as
was found with the WPPSI-IV (Wechsler,
2012). The bifactor model has been specifically
recommended for tests of a variety of con-
structs, such as intelligence (Brunner, Nagy, &
Wilhelm, 2012), health outcomes (Reise,

Morizot, & Hays, 2007), quality of life (Varni,
Beaujean, & Limbers, in press), psychiatric dis-
tress (Thomas, 2012), early academic skills
(Betts, Pickart, & Heistad, 2011), personality
(Chen, Hayes, Carver, Laurenceau, & Zhang,
2012), and psychopathology (Brouwer, Meijer,
& Zevalkink, 2013). Although the bifactor
model has been found to be a good fit for other
Wechsler scales (Brunner et al., 2012; Gignac,
2006; Golay & Lecerf, 2011; Golay, Reverte,
Rossier, Favez, & Lecerf, 2013; Gustafsson &
Undheim, 1996; J. M. Nelson, Canivez, & Wat-
kins, 2013; Watkins, 2010), Wechsler (2012)
did not examine its applicability for the WPPSI-
IV. This is an unfortunate omission because,
unlike higher order models, bifactor models al-
low an examination of the strength of the direct
relationship between the observed variables and
the factors as well as a determination of the role
of first-order factors independent of the general
factor (Chen et al., 2006, 2012).

These benefits of bifactor models are partic-
ularly salient when examining cognitive ability
data because a factor or variable that does not
contribute beyond what it shares with the gen-
eral factor might be identified (Chen et al.,
2012), suggesting that the data is overfactored
(e.g., Frazier & Youngstrom, 2007). For exam-
ple, general and fluid intelligence factors were
found to be redundant for the Wechsler Adult
Intelligence Scale (Fourth Edition) (Wechsler,
2008) when a bifactor model was applied (Ni-
ileksela, Reynolds, & Kaufman, 2013). In addi-
tion, an observed variable that reflects only g
may fail to emerge in the bifactor model and
will likely result in estimation problems, such as
small loadings on a domain-specific first-order
factor (Rindskopf & Rose, 1988). This would
occur because the common variance in the mea-
sured variable is entirely explained by g. Such
problems would not be easy to detect with high-
er-order models (Chen et al., 2006). Keith’s
(2005) analysis of the WISC-IV provided an
example of this situation, as the Arithmetic sub-
test had a loading of .80 on its first-order factor
in the higher-order model but only .11 in the
bifactor model (cf. Reynolds & Keith, 2013).

1 Under certain conditions, higher-order and bifactor
models can be made equivalent (Yung et al., 1999), but as
their purpose and interpretation are usually quite different
(Chen, West, & Sousa, 2006), we treat them as separate
models.
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Given these advantages, the current study ex-
amined the applicability of a bifactor model for
the WPPSI-IV normative sample data.

Method

Participants

The WPPSI-IV normative sample contains
1,700 English-speaking children aged 2 years
and 6 months through 7 years and 7 months,

bifurcated into two age groups: 2:6 –3:11 year
olds (n � 600) and 4:0 –7:7 year olds (n �
1,100). The standardization sample closely
matched the 2010 census on gender, age, race/
ethnicity, parent education level, and geo-
graphic region. Across half-year age incre-
ments, the sample was 12.0% to 16.5%
African American, 2.0% to 5.0% Asian
American, 22.0% to 27.0% Hispanic, 50.0%
to 57.5% White, and 3.0% to 5.5% of other
race/ethnicity. Wechsler (2012, Chapter 3)

Figure 1. Example of second-order structure for the Wechsler Preschool and Primary Scale
of Intelligence—Fourth Edition. VC � Verbal Comprehension factor; VS � Visual-Spatial
factor; WM � Working Memory factor; IN � Information; RV � Receptive Vocabulary;
PN � Picture Naming; BD � Block Design; OA � Object Assembly; PM � Picture
Memory; ZL � Zoo Locations.

Figure 2. Bifactor model for the Wechsler Preschool and Primary Scale of Intelligence—
Fourth Edition among 600 children aged 2:6 to 3:11 years. VC � Verbal Comprehension
factor; VS � Visual-Spatial factor; WM � Working Memory factor; IN � Information;
RV � Receptive Vocabulary; PN � Picture Naming; BD � Block Design; OA � Object
Assembly; PM � Picture Memory; ZL � Zoo Locations. The domain-specific loadings for
the VS and WM factors were constrained to be equal.
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provided detailed information on the stan-
dardization sample grouped across the strati-
fication variables.

Instrument

At ages 2:6 through 3:11 years, the
WPPSI-IV subtests produce three Primary In-
dex scores, each composed of two subtests: (a)
the Verbal Comprehension Index (VC) from the
Receptive Vocabulary and Information sub-
tests; (b) the Visual Spatial Index (VS) from the
Block Design and Object Assembly subtests;
and (c) the Working Memory Index (WM) from
the Picture Memory and Zoo Locations sub-
tests. One supplemental subtest, Picture Nam-
ing, is provided.

At ages 4:0 through 7:7 years, the WPPSI-IV
subtests produce five Primary Index scores,
each composed of two subtests: (a) the VC from
the Information and Similarities subtests; (b)
the VS from the Block Design and Object As-
sembly subtests; (c) the Fluid Reasoning Index
(FR) from the Matrix Reasoning and Picture
Concepts subtests; (d) the WM from the Picture
Memory and Zoo Locations subtests; and (e) the
Processing Speed Index (PS) from the Bug
Search and Cancellation subtests. An additional
five supplemental subtests are provided.

Wechsler (2012) reported that the average
internal consistency reliability of WPPSI-IV
subtests ranged from .75 for Animal Coding to
.93 for Similarities and the average internal
consistency reliabilities of Primary Index scores
ranged from .86 for PS to .94 for VC (p. 49),
and these high reliability coefficients general-
ized across a variety of clinical samples (p. 51).
Short-term stability coefficients were high as
well (.75 to .87 for subtests and .84 to .89 for
Indexes, pp. 56–59). Wechsler presented con-
siderable validity evidence. For example, corre-
lations between the WPPSI-IV FSIQ and the
omnibus score from other test batteries ranged
from .81 with the DAS-II to .86 with the
WPPSI-III and the correlation between
WPPSI-IV FSIQ and academic achievement
was .75 (pp. 84–99).

Analyses

Confirmatory factor analyses. Wechsler
(2012, pp. 75–83) presented a series of confir-
matory factor analytic (CFA) models, ranging
from a single factor to a second-order factor

model for each age group. Although Wechsler
(2012) provided no information about the con-
straints used to identify these models, we were
able to reproduce the results using effects cod-
ing. The effects-coding method of identification
constrains the set of indicator loadings for a
given factor to average 1.0, or, equivalently,
constrains the sum of a factor’s loadings to be
equal to the number of observed indicator vari-
ables for the factor (Little, Slegers, & Card,
2006). This method of identification makes the
factor loading estimates an “optimal balance”
around 1.0 but does not constrain any particular
loading to be 1.0. The result is that the latent
variance estimates “reflect the observed metric
of the indictors, optimally weighted by the de-
gree to which each indicator represents the un-
derlying latent construct” (Little et al., 2006,
p. 63).

We replicated the Wechsler (2012) analyses
for each age group using all subtests, but also fit
a bifactor model. All models were fit using the
lavaan package (Rosseel, 2012) in the R pro-
gramming language (R Development Core
Team, 2011) using maximum likelihood estima-
tion. Wechsler (2012, pp. 80–82) reported CFA
models using all the subtests as well as models
using just the subtests that comprise the Primary
Index scores. We performed analyses using
both sets of variables, but the results did not
substantially differ. To conserve space, only the
results from all the subtests are included in this
paper. However, the R syntax used to fit all
models as well as the results from analyses with
both sets of variables are available in the online
ancillary materials.

Model fit. Although there are no univer-
sally accepted cutoff values for model fit indices
(West, Taylor, & Wu, 2012), we needed some
criteria to judge the models. Thus, we examined
multiple indices that represented a variety of fit
criteria (Marsh, Hau, & Grayson, 2005). Spe-
cifically, the (a) �2, (b) comparative fit index
(CFI), (c) root mean square error of approxima-
tion (RMSEA), (d) standardized root-mean-
square residual (SRMR), and (e) Akaike’s In-
formation Criterion (AIC). For good model-data
fit criteria, we used the following guidelines: (a)
CFI � 0.95; (b) RMSEA � 0.06; and (c) SRMR �
0.06 (Hu & Bentler, 1999; Sivo, Xitao, Witta, &
Willse, 2006). There are no specific criteria for
information-based fit indices like the AIC, but
when comparing two models from the same
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data, smaller values indicate better approxima-
tions of the true model (Markon & Krueger,
2004). For a model to be deemed superior, it
had to (a) exhibit good fit according to CFI,
RMSEA, and SRMR indices; (b) demonstrate a
�CFI value �0.01 for nested models (Dimitrov,
2012); and/or (c) display the smallest AIC value
(Burnham & Anderson, 2004).

Model-based reliability. The bifactor
model hypothesizes that each WPPSI-IV sub-
test is independently influenced by two latent
constructs: the general ability factor (g) and one
broad domain-specific first-order factor (e.g.,
VC, VS, etc.). Traditional internal consistency
measures (i.e., alpha) assume that all consistent
variability is true score variance from a single
construct and that all items are equally sensitive
in measuring that construct (Yang & Green,
2011). This is likely inappropriate for scores
where a bifactor model fits the data well, as the
consistent variance contributed by both g and
the domain-specific factor is inappropriately at-
tributed to the domain-specific first-order factor
alone (Yang & Green, 2011). Unbiased alterna-
tive measures of construct reliability are omega
(�) and omega hierarchical (�h; Zinbarg, Rev-
elle, Yovel, & Li, 2005). � estimates the vari-
ance accounted for by both constructs (i.e., gen-

eral and domain-specific) influencing indicators
in a given domain, whereas �h estimates the
variance accounted for by a single target con-
struct (i.e., either general or domain-specific
first-order). Using the computational methods
of Brunner et al. (2012), � and �h were calcu-
lated with the omega software package (Wat-
kins, 2013). Although there are no definitive
standards for � and �h (Reise, Bonifay, & Havi-
land, 2013), Shrout and Lane (2012, p. 646,
emphasis in original) suggested, “.00 to .10,
virtually no reliability; .11 to .40, slight; .41 to
.60, fair; .61 to .80, moderate; .81 to 1.0; sub-
stantial reliability.”

Results

Ages 2:6–3:11 Group

Using all seven subtests, Wechsler (2012)
evaluated three models: (a) a single-factor
model (g); (b) a second-order model with one
second-order factor (g) and two first-order fac-
tors (Verbal and Nonverbal factors); and (c) a
second-order model with one second-order fac-
tor (g) and three first-order factors (VC, VS, and
WM). We added a bifactor version of
Wechsler’s (2012) third model. As displayed in

Table 1
Goodness-of-Fit Statistics for Confirmatory Factor Analyses for Age Groups 2:6–3:11 (n � 600) and
4:0–7:7 (n � 1,100)

Model �2 df p CFI RMSEA SRMR AIC

Ages 2:6–3:11
1-General factor 70.17 14 .01 .96 .08 .04 20095
2-General, verbal, nonverbal 31.46 10 .01 .98 .06 .02 20066
3-General, VC, VS, WM 25.46 8 .01 .99 .06 .02 20064
Bifactor version of Model 3 13.73 9 .13 1.00 .03 .01 20048

Ages 4:0–7:7
1-General factor 950.32 90 .01 .88 .09 .06 76675
2-General, verbal, nonverbal 500.34 86 .01 .94 .07 .04 76235
3-General, VC, PS, (VS � FR � WM) 284.59 84 .01 .97 .05 .03 76023
4a-General, VC, WM, PS, (VS � FR) 270.11 82 .01 .97 .05 .03 76013
4b-General, VC, VS, PS, (FR � WM) 263.22 82 .01 .97 .04 .03 76006
5a-General, VC, VS, FR, WM, PS 249.64 80 .01 .98 .04 .03 75996
Bifactor version of Model 5a 231.47 75 .01 .98 .04 .02 75998
5b-General, VC(1), VC(2), VS, FR, WM, PS 212.03 76 .01 .98 .04 .02 75967
Bifactor version of Model 5b 191.61 74 .01 .98 .04 .02 75962

Note. Models are labeled as per Wechsler (2012, pp. 76–77). Also following Wechsler, all models were identified using
effects-coding (Little, Slegers, & Card, 2006). VC � Verbal Comprehension factor; VC(1) � Verbal Comprehension first
subfactor; VC(2) � Verbal Comprehension second subfactor; VS � Visual-Spatial factor; WM � Working Memory factor;
PS � Processing Speed factor; FR � Fluid Reasoning factor; CFI � comparative fit index; RMSEA � root mean square
error of approximation; SRMR � standardized root-mean-square residual; AIC �Akaike’s Information Criterion.
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Table 1, three of the four models exhibited good
fit, but the bifactor model fit the data better
(�CFI � .01 and �AIC � 16) than the higher-
order model preferred by Wechsler. Thus, it was
deemed the superior model.

Using the coefficients from the bifactor
model, we examined the reliability of each fac-
tor (see Table 2 and Figure 2). The g factor
accounted for more total and common variance
(38.5% and 78.7%, respectively) than all do-
main-specific first-order factors combined. In

addition, it exerted a stronger direct influence
on each subtest than the corresponding domain-
specific factor. The �h coefficient for the g
factor was .78, but the domain-specific factors
had poor reliability independent of g (i.e., �h
coefficients of .08 to .20). None of the VS or
WM subtests had loadings on the domain-
specific factors � .30, and only two of the three
VC subtests exhibited domain-specific factor
loadings � .30. Similarly, only the three sub-
tests (all measuring VC) exhibited communali-

Table 2
Sources of Variance in the Wechsler Preschool and Primary Scale of Intelligence (4th Ed.) Among 600
Children Aged 2:6 to 3:11 Years and 1,100 Children Aged 4:00–7:7 Years

General VC(1) VC(2) VS WM FR PS

Subtest b Var b Var b Var b Var b Var b Var b Var h2 u2

Ages 2:6–3:11 Years
IN .70 49.0 .39 15.2 64.2 35.8
RV .68 46.2 .23 5.3 51.5 48.5
PN .65 42.3 .54 29.2 71.4 28.6
BD .62 38.4 .23 5.3 43.7 56.3
OA .56 31.4 .23 5.3 36.7 63.3
PM .64 41.0 .24 5.8 46.7 53.3
ZL .46 21.2 .26 6.8 27.9 72.1
Total 38.5 7.1 1.5 1.8 48.9 51.1
Common 78.7 14.5 3.1 3.7
� .85 .83 .57 .54
�h .78 .20 .08 .09

Ages 4:0–7:7 Years
IN .67 44.9 .42 17.6 62.5 37.5
SI .66 43.6 .49 24.0 67.6 32.4
VO .65 42.3 .47 22.1 64.3 35.7
CO .61 37.2 .48 23.0 60.3 39.7
RV .63 39.7 .36 13.0 52.6 47.4
PN .61 37.2 .57 32.5 69.7 30.3
BD .67 44.9 .30 9.0 53.9 46.1
OA .63 39.7 .29 8.4 48.1 51.9
MR .69 47.6 .18 3.2 50.8 49.2
PC .59 34.8 .18 3.2 38.0 62.0
PM .62 38.4 .28 7.8 46.3 53.7
ZL .54 29.2 .27 7.3 36.5 63.5
BS .58 33.6 .49 24.0 57.7 42.3
CA .45 20.3 .40 16.0 36.3 63.7
AC .51 26.0 .50 25.0 51.0 49.0
Total 37.3 5.8 3.0 1.2 1.0 0.4 4.3 53.0 47.0
Common 70.3 10.9 5.7 2.2 1.9 0.8 8.2
� .93 .88 .76 .68 .58 .61 .74
�h .86 .30 .27 .12 .11 .05 .33

Note. b � standardized factor loading; Var � % variance explained; h2 � communality; u2 � uniqueness; VC(1) �
Verbal Comprehension factor or Verbal Comprehension first subfactor; VC(2) � Verbal Comprehension second subfactor;
VS � Visual-Spatial factor; WM � Working Memory factor; PS � Processing Speed factor; FR � Fluid Reasoning factor;
IN � Information; RV � Receptive Vocabulary; PN � Picture Naming; BD � Block Design; OA � Object Assembly;
PM � Picture Memory; ZL � Zoo Locations; SI � Similarities; VO � Vocabulary; CO � Comprehension; MR � Matrix
Reasoning; PC � Picture Concepts; BS � Bug Search; CA � Cancellation; AC � Animal Coding; � � omega; and �h �
omega hierarchical. Factor loadings � .30 are in bold.
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ties larger than their uniqueness, indicating that
much of the variability in these subtests is com-
prised of subtest-specific and error variance.

Ages 4:0–7:7 Group

Using all 15 subtests at the 4:0 through 7:7
year group, Wechsler (2012, pp. 76–80) exam-
ined seven models, labeled Models 1, 2, 3, 4a,
4b, 5a, and 5b, with their preferred models (5a
and 5b) being higher-order models with five
first-order factors. Model 5b differed from 5a in
that it added two VC “subfactors”: (a) Broad/
Expressive, comprised of four subtests, and (b)
Focused/Simple, comprised of two subtests. We
estimated bifactor versions of both five-factor
higher-order models. As illustrated in Table 1,

seven of the nine models displayed good fit to
the data, but the bifactor models fit better than
their corresponding higher-order counterparts
(i.e., �AIC � 5 for bifactor Model 5b vs.
Wechsler Model 5b). Consequently, the bifactor
model was deemed superior.

Using the estimates from a bifactor version of
Model 5b, the g factor accounted for more total
and common variance (37.3% and 70.3%, re-
spectively) than all domain-specific first-order
factors combined—a result replicated in both
age groups. In addition, g exerted a stronger
direct influence on each subtest than its corre-
sponding domain-specific factor (see Table 2
and Figure 3). The �h coefficient for the g factor
was .86, but the domain-specific factors had

Figure 3. Bifactor model for the Wechsler Preschool and Primary Scale of Intelligence—
Fourth Edition among 1,100 children aged 4:00–7:7 years. VC(1) � Verbal Comprehension
factor or Verbal Comprehension first subfactor; VC(2) � Verbal Comprehension second
subfactor; VS � Visual-Spatial factor; WM � Working Memory factor; FR � Fluid
Reasoning factor; PS � Processing Speed factor; IN � Information; SI � Similarities; VO �
Vocabulary; CO � Comprehension; RV � Receptive Vocabulary; PN � Picture Naming;
BD � Block Design; OA � Object Assembly; PM � Picture Memory; ZL � Zoo Locations;
MR � Matrix Reasoning; PC � Picture Concepts; BS � Bug Search; CA � Cancellation;
AC � Animal Coding.
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poor reliability independent of g (i.e., �h coef-
ficients of .05 to .33). The VC, VS, and PS
factors all had subtests that exhibited factor
loadings on the domain-specific factors �.30,
but none of the subtests for the WM or FR
factors had factor loadings �.30. Similarly,
most of the WM and FR subtests exhibited com-
munalities smaller than their uniqueness, indicat-
ing that subtest-specific and error variance pre-
dominated those four subtests’ variance.

Discussion

A bifactor model fit the WPPSI-IV normative
sample data as well as or better than the higher-
order models favored by Wechsler (2012). Un-
like higher-order models, a bifactor model al-
lows direct examination of the strength of the
relationship between WPPSI-IV subtests and
their corresponding domain-specific factors. As
quantified in Table 2, the general factor ac-
counted for more variance in every subtest than
did its corresponding domain-specific first-
order factor. In addition, the g factor accounted
for more total and common variance than all
domain-specific first-order factors combined.

Bifactor models allow for an analysis of the
role of the domain-specific first-order factors
independent of the general factor. As reflected
in Table 2, the strongest WPPSI-IV domain-
specific first-order factor (VC) accounted for
between 15%–17% of the common variance. In
addition, many subtests exhibited communali-
ties smaller than their uniqueness, indicating
that much of the observed variability on those
subtests is due to either unique aspects of those
subtests or measurement error. Further, the do-
main-specific first-order factors exhibited poor
reliability independent of g (i.e., �h coefficients
of .05 to .33). These results suggest that general
intelligence should be conceptualized as a first-
order breadth factor rather than a higher-order
superordinate factor.

Interpretation of scores from tests like the
WPPSI-IV is often ambiguous because of their
multidimensional structure. A total score (e.g.,
FSIQ) will be more reliable than any subscore
(e.g., VCI, WMI, etc.), but may be confounded
by systematic variance from subscore con-
structs. Likewise, subscores can be confounded
by shared systematic variance and therefore
may not provide unique information beyond
that contributed by the total score (Chen et al.,

2012). Clarification of this ambiguity can be
achieved if the proportion of variance in ob-
served scores due to a single common latent
variable can be determined. One way to accom-
plish this variance partitioning is by estimating
a bifactor structure and computing model-based
reliability indices (Reise et al., 2013). For the
WPPSI-IV total and subscores, � estimates the
proportion of variance that can be attributed to
all sources of common variance and �h esti-
mates the proportion of variance that can be
attributed to a single common latent variable.
Table 2 reveals that � and �h were relatively
equivalent for the general intelligence factor
(� � .07), but highly dissimilar for the domain-
specific factors (�.41 to �.63). Thus, the total
score can be interpreted as substantially reflect-
ing the intended construct of general intelli-
gence. In contrast, the subscores contained large
proportions of common and unique variance
and consequently cannot be interpreted as pure
measures of the single latent variables they pur-
port to measure (e.g., verbal comprehension,
working memory, etc.).

Accordingly, this study’s results mitigate
against Wechsler’s (2012, p. 144) reliance on
the domain-specific index scores “as the princi-
pal level of clinical interpretation.” To the con-
trary, these results suggest that only the general
intelligence dimension (and its manifestation in
the full scale IQ score) is sufficiently robust and
reliable for clinical use of such a high stakes
instrument (Bergeron & Floyd, 2013). Further,
the poor reliability of domain-specific first-
order factors, low communality of subtests, and
weak loadings of subtests on domain-specific
first-order factors might be symptoms of over-
factoring (Frazier & Youngstrom, 2007).

In the absence of contradictory evidence,
practitioners should (a) interpret the factor
structure of the WPPSI-IV as consisting of a
general intelligence factor and the several pri-
mary index factors (depending on age) de-
scribed by Wechsler (2012); (b) afford predom-
inant interpretive weight to the FSIQ (as a proxy
for general intelligence) because it captured the
greatest amount of common variance and was
the most reliable construct; (c) interpret the
domain-specific index scores with great caution,
remembering that their poor reliability and the
high levels of subtest-specific and error variance
found in their constituent subtests will not allow
them to “necessarily provide additional and
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separate information” (Golay et al., 2013, p.
507); and (d) remain alert for new validity
evidence that might enhance these interpre-
tive suggestions.

One possible limitation of this study is the
use of effects-coding for factor identification.
When Little et al. (2006) introduced the method,
they did so in the context of multigroup models
and only suggested its use for first-order models
with simple structure. As this was the only
method able to reproduce Wechsler’s (2012)
results, we used it for the bifactor models as
well because we did not want to confound the
results by using different identification methods
across models. Future studies of the WPPSI-IV
might want to compare identification methods
to see if that influences the results of the model
fit.

Another possible limitation is the use of
model fit indices to compare models. Barrett
(2007) argued that the only acceptable statisti-
cal standard for model fit is the chi-square test
and that “ad hoc “approximate fit” indices fail
miserably” (p. 823). Concern about cutoff val-
ues for goodness-of-fit indices has also been
expressed by other measurement experts (e.g.,
Marsh et al., 2005). More specifically, Murray
and Johnson (2013) questioned the use of model
fit indices in distinguishing between second-
order and bifactor models and surmised that
there might be a statistical bias favoring bifactor
models because they are methodologically bet-
ter able to account for unmodeled complexity
(e.g., small cross-loadings) in the data. Given
this potential bias, Murray and Johnson (2013)
suggested that model selection should be based
on “the specific aims of the studies and not on
model fit” (p. 421). If the study aims to measure
g then the two models do equally well. How-
ever, if the study aims to estimate domain-
specific abilities, then the higher-order model
produces domain-specific scores that reflect an
amalgam of both g and domain-specific vari-
ance; consequently, “bifactor model factor
scores should be preferred” (Murray & Johnson,
2013, p. 420) because they reflect the influence
of domain-specific factors independent of g.

A final potential limitation is that this study
relied on data from the standardization sample
and it is unknown if the same structure will
emerge among clinical samples, especially chil-
dren with learning disorders and diverse lan-
guage skills. It is also not known if the various

WPPSI-IV index scores possess incremental
predictive validity. One strength of a bifactor
model is the ability to directly test whether the
domain-specific factors predict external vari-
ables over and above a general factor. This
cannot be accomplished with a typical higher-
order model because the first-order factors carry
variance from both first- and second-order fac-
tors (Brown, 2013; Chen et al., 2012). It was not
possible to test incremental predictive validity
in the current study, but analyses of other
Wechsler scales have typically found little in-
cremental predictive validity for domain-
specific factors beyond g or the FSIQ score
(Canivez, 2013; Glutting, Watkins, Konold, &
McDermott, 2006; Parkin & Beaujean, 2012).
However, replication and generalization studies
should be conducted with the WPPSI-IV among
a variety of clinical and nonclinical populations
to better delineate the relationships between the
general and domain-specific first-order factors
and theory-relevant criteria (e.g., academic
achievement) to provide additional guidance for
practitioners.
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